# 2020-05-29 Chinese Postman & Ch3 (I) Matchings and Factors ###### tags: `圖論` [影片連結]( https://www.youtube.com/watch?v=ufTd8UrlxS0&list=PL8xY3250v6CR_mnR5_qh06WNMpqe7Ljav&index=2&t=0s) ## P.2 Chinese Postman Problem * Seek a closed walk of minimum total length that uses all the edges. >[name=Omnom][color=#00a000]traveling salesman:每個點至少走一次。 >Chinese Postman:每個邊至少走一次 ## P.3,4 * If only two odd vertices, use Dijkstra's algorithm to find the shortest path between them. * 有$2k$個 odd degree的點的話,就要兩兩用Dijkstra's algorithm找他們的shortest path,這時畫出輔助圖就是$2k$個點的complete graph,然後在complete graph中找出可以讓所有點的都可以兩兩一組配對最小總和的weight,(依講義範例是1配6,3配9),最後再把這些邊加回去原本要找postman problem的graph ![](https://i.imgur.com/kotYC84.png) >[name=Omnom][color=#00a000]因為是看總和,所以不能用Kruskal的方式判斷 >[name=Omnom][color=#00a000]任意simple graph不會有奇數個odd vertices ## P.5 Matchings and Factors * Matching是邊所形成的集合(以下記為$M$),$M$任意邊沒有重複的端點 * $Def$: $M-saturated$:點有配對到就是saturated * perfect matching:所有點都有配對到 * 註:講義的範例都不是perfect matching ## P.6 * Perfect matching$\Rightarrow$maximum matching,只是說可能會有不只一種配對的方式 * 反過來不一定,maximum可以看做是所有maximal情況底下挑出最好的,但不代表可以perfect matching >[name=Omnom][color=#00a000]maximal: 在特定初始條件,所能找到最大的 >maximum:所有初始條件中,真正達到最大的 ## P.7,8 * $Def$: 1. $M$-alternating path: 屬於M和不屬於M的edges交錯形成 2. $M$-augmenting path 一種$M$-alternating path,不過是unsaturated endpoints 3. Symmetric difference $M _\Delta M'= (M-M')\cup(M'-M)$ >[name=Omnom][color=#00a000]就是Xor的樣子 >[Set](https://hackmd.io/TMUHk2TSROSo7BW8o7Ppqg#Set-Definition) * Example: $M _\Delta M'$得出的結果是粗線和細線但不包括重複的edge(e) ## P.9 * $Lemma$: Components of $M _\Delta M'$ is either path or even cycle ![](https://i.imgur.com/6K2qApu.png) $pf$ :::info <font color=#000000> maximum degree: $\Delta(F)$ $\Delta (F)\leq 2$: $\rightarrow$ path or cycle $∵ \Delta (M) , \Delta (M') \leq 1$ 交錯的原因:$M-M'$是在$M$中,不能相鄰,同理$M'-M$ 如果cycle是odd會造成最後的edge會被分到同一個matching裡,這違背matching的定義,所以不可能有odd cycle </font> ::: ## P.10,11 * $Theorem \ 3.1.10$ Matching $M$ in graph $G$ is maximum $\Leftrightarrow$ $G$ has no $M$-augmenting path ![](https://i.imgur.com/KUuOkeP.png) ![](https://i.imgur.com/1NK74uW.png) $pf$ :::info <font color=#000000> $P ~~iff~~ Q \Leftrightarrow \neg P ~~iff~~ \neg Q$ $i.e.$ Matching $M$ in graph $G$ is NOT maximum $\Leftrightarrow$ $G$ has $M$-augmenting path $\Leftarrow$: by switching edges $\Rightarrow$: $|M'|>|M| \rightarrow |M'-M|>|M-M'|$ & by [Lemma](https://hackmd.io/1ggnrQdKQ-qg129pur--gg?both#P9) $∴ \exists$ path with end-edges in $M'-M$ $\rightarrow$ $M$-augmenting path </font> ::: ## P.12~14 Hall’s Matching Condition * $Hall's~Theorem$: $X,Y$ bigraph $G$ has a matching saturates $X$ $\Leftrightarrow$ $|N(S)| \geq |S|,\forall S\subseteq X$ ![](https://i.imgur.com/2YhUXar.png) ![](https://i.imgur.com/QOoTch1.png) $pf$ <font color=#ff0000>(待修)</font> :::info <font color=#000000> $\Rightarrow$:(反證法)$P \Rightarrow Q$ Suppose $G$ has a matching that saturates $X$, and $|N(S)|\ngeq |S|$,根據pigeonhole原理,$|S|$如果大於$|N(S)|$,那$S$一定會有點會無法配到,因此矛盾。 ![](https://i.imgur.com/uasBWpE.png) $\Leftarrow$:$\neg P\Rightarrow \neg Q$ $i.e.~$: $X,Y$ bigraph $G$ has **no** matching saturates $X$ $\Rightarrow$ $\exists S\subseteq X,~s.t.~|N(S)| \ngeq |S|$ $M$是maximum matching 但沒辦法saturate所有的$X$,由 $Theorem \ 3.1.10$得知說$M$沒有augmenting path,所以$T$ is saturated.(如果$T$沒有saturated,代表會有augmenting path) $|N(S)| = T = |S-\{u_1,...\}| \ngeq |S|$ (沒有解釋得很好,求大神補充) </font> ::: ## P.15 ![](https://i.imgur.com/spnZHB1.png) * $Corollary\ 3.1.13$ $\forall k>0$, $k$-regular $X,Y$-bigraph has a perfect matching * $pf$ :::info <font color=#000000> 1. $|X|=|Y|$ [<font color=#ff0000> 2020-04-10 P.37</font>](https://hackmd.io/QIz8EtcKRqWANklnF4S-Fw#P37-Vertex-Degree-and-Counting-Conti) 2. let $S \subseteq X$ $m$ edges from $S$ to $N(S)$ $m=k|S| ∵ k$-regular $m \leq k|N(S)|$ : $m$ edges對應到$N(S)$,從$N(S)$出發計算$k|N(S)|$ edges會包含前述的$m$ edges satisfy Hall's Condition combine 1. 2. Q.E.D. </font> ::: ## P.16,17 Vertex Cover * $Def$ set $Q \subseteq V(G)$,和$Q$相連的edge構成$E(G)$ * $|M|\leq |Q|$ * 一個點最多只能照顧一條有matching的edge ![](https://i.imgur.com/yjgvaUd.png) ## P.18 ![](https://i.imgur.com/n7exScu.png) 證明optimal的情況: $|M|=|Q|$,$M$: maximum matching,$Q$: minimum size vertex cover $pf$ :::info <font color=#000000> note: $|M| \leq |Q|$ 用contradiction,假設$|M|= |Q|$不是optimal 1. M 不是maximum matching,代表會有M'比M更大,違反不等式 2. Q 不是minimum size vertex cover,代表會有Q'比Q更小,違反不等式 所以$|M|= |Q|$是optimal </font> ::: ## P.19,20 <font color=#ff0000>絕對考 </font> ![](https://i.imgur.com/1fRDbfv.png) * $Theorem~ 3.1.16$ If $G$ is bipartite, then $|max ~ Matching|= |min ~ Vertex ~ Cover|$ ![](https://i.imgur.com/vl8WBsQ.png) ![](https://i.imgur.com/JbRbrOa.png) ![](https://i.imgur.com/726UVHm.jpg) ![](https://i.imgur.com/ZjC6a8q.png) ![](https://i.imgur.com/3nM63W3.png) ![](https://i.imgur.com/Xt06R71.png) For H': $Q = R\cup T=R\cup (T-S)\cup S$ $Q'=R\cup (T-S)\cup N(S)$ if $|N(S)|$<$|S|$, 違反Q是最小的vertex cover的前提 因此, $|N(S)|\geq |S|$,符合Hall's condition,代表H'裡有matching $M_2$能saturate所有的T ![](https://i.imgur.com/t9C2tZh.png)