# 2020-03-27 Fundamental Concept II ###### tags: `圖論` [影片](https://www.youtube.com/watch?v=G35ucJP3YoA&list=PL8xY3250v6CSrLIsKMFLyrCfWonR1STtt&index=4) ## 講義: fundamental_concept_1_2020 ### P.2 Complete Graph * $Def$: A simple graph whose vertices are pairwise adjacent. * $K_n$ : Complete graph of $n$-vertices * $K_{r,s}$: Complete bipartite graph(or biclique) * c.f. Clique: A set of pairwise adjacent vertices 兩兩有連線(不限定simple graph) $C_n$是cycle n vertices $P_n$是path n vertices = n-1 edge Complete bipartite = biclique $\neq$complete grph $K_5$中找出$C_3$有幾種isomorphism 的subgraph = $C^5_3$ $K_{2,3}\in K_{2+3}$的subgraph 補充:[complete k-partite](https://mathworld.wolfram.com/Completek-PartiteGraph.html) ### P.3 Isomorphic: $G_1、G_2、G_4$ Complement Graph: 2 disjoint $K_3$ ![](https://i.imgur.com/VAEkOQc.png =80%x) ***方法:*** isomorphism找出bijection Function 先找出adjacent matrix 在判斷出有沒有這種function $G_1,G_2,G_4$ 是isomorphic(補圖也是isomorphic), 皆為$K_{3,3}$ 而complement 是$C_3$ disjoint的graph $G_3$有兩個$K_3$的subgraph(非bipartite), complement graph 為$C_6$ connected graph ### P.4 * Self Complementary - Definition: $G$ and $\bar G$ are isomorphic * Decomposition of a graph $G$ - a list of subgraphs $\{G_i \}$, $G_i=\{V_i, E_i\}$ - $\bigcup_{i}{G_i}= G$ - 一條 edge 只會出現在一個subgraph裡 - $E_i \cap E_j= \emptyset , \forall i ≠ j$ * An $n$-vertex graph $H$ is self-complementary $\Leftrightarrow K_n$ has a decomposition consisting of two copies of $H$. $K_5$可拆成兩個 $C_5$的self-complementary graph $K_4$可拆成三個$P_3$ subgraph $K_7$有$C_2^7=21個edges$可以decompose成7個$K_3$ $K_6$ 可以解構成 5個$P_4$ >[color=#00a000] > >$\Rightarrow$ >$H$ $\cong$ $\bar H$ >$\bar H = K_n - H$ $\Rightarrow K_n\ decompose\ to \ 2\ H$ > >$\Leftarrow$ ( 直接證明) > >[name=Omnom] ### P.5 ![](https://i.imgur.com/CRUiAuP.png =80%x) claw: $K_{1,3}$ paw: $claw\ + 1\ edge$ kite: $K_4-1\ edge$ **1.1 exercise 6,7,8,32,34,35,36,37 有可能變成考試的題目** ### P.6 Petersen Graph ![](https://i.imgur.com/oRAhrjd.png) * Definition: - **Simple graph** whose **vertices are the 2-element subsets** of a 5-element set and whose edges are the pairs of disjoint 2-element subsets.( 12 = 21 編碼相同、 一個點最大3 degree) - i.e. + each vertex is encoded with 2 elements from given 5 elements + any two adjacent vextices contain different elements (disjoint) + 5 elements must be used at least once * girth(周長): A graph with a cycle is the length of its shortest cycle. - 可能不只1個 - no cycle has infinite girth ### P.7 Property of Petersen graph 在PG裡兩個不相鄰的點 $\Rightarrow$ exactly a common neighbor $pf.$ :::info <font color=#000000> 1. Nonadjacent vertices are 2-sets sharing one element; their union S has 3. 2. A vertex adjacent to both is a 2-set disjoint from both. 3. Since the 2-sets are chosen from {1, 2, 3, 4, 5}, there exactly one 2-set disjoint from S. </font> ::: proof 補充: 1. 2個不相鄰的點會share一個element ### P.8 Property of Petersen graph(Conti) * Peterson graph has girth 5 proof補充: 1. 不會有1 cycle、2 cycle(simple graph) 2. 不會有3 cycle(沒辦法用5個element編完) 3. 不會有4 cycle(違反proposition,PG只會有一個common neighbor,4 cycle會有2個common neighber) 補充: [Petersen Graph](https://mathworld.wolfram.com/PetersenGraph.html) [Generalized Petersen Graph](https://en.wikipedia.org/wiki/Generalized_Petersen_graph) >[color=#00a000] > >我還是對girth = 5感到疑惑 >[name=Omnom] ### P.9 Automorphism of $G$ * Definition: **isomorphism** from $G$ to $G$ - Usage: 對稱性 - 可以透過對稱軸找automorphic [name=Omnom] vertex-transitive: for every parir $u,v\in V(G)$存在轉換的函數 ; identity permutation(點跟自己換是不是isomorphism) >[color=#00a000] > >自己和自己互換感覺很trival >討論上應該是沒意義的 >[name=Omnom] ![](https://i.imgur.com/pp3Sfcg.png) $1\leftrightarrow 4,2\leftrightarrow 3$ is isomorphism $1\leftrightarrow 2$ is not isomorphism ### P.10 P.11 Automorphism of G 是排列組合的函數$P$ $V(G)\to V(G)\ s.t. P(u)P(v) \in E(G)\ iff\ u,v \in E(G)$ matrix 第一行是原始的點,第二行是交換過的點 Automorphism: 旋轉、對稱 $\epsilon:identity/ \alpha : reflection/\ r: rotation$ ### P.12 Path, Cycle, Trail * Walk - a list of vertices and edges($v_0,e_1,v_1,...,e_k,v_k$) - each edge is between 2 vertices - 意思就是把所有走過的路記錄下來 * Trail - **No repeated edge 點可重複** - 七橋問題就是找trail - 邊跟點都記 * Path - **No repeated vertices** - 只記點 ### P.13 Path, Cycle, Trail (Cont.) * $u,v$-walk ($u,v$-trail) - direction : $u \rightarrow v$ * $u,v$-path - $degree : \left\{ \begin{array}{**lr**}{1:u,v \\ \text{otherwise} : \text{internal vertices}} \end{array}\right.$ * length of walk, trail, path, cycle - number of edges * closed (w.r.t walk and trail) - endpoints are the same - 補充: + path 不管他有沒有close,因為只記點 ### P.14,15 Path, Cycle, Trail (Cont.) Example ### P.16 Strong Principle of Induction * a statement $P(n)$ with interger parameter $n$ * $P(1)$ is true * $\forall n > 1$ , $P(k)$ is true for $1 ≤ k < n \rightarrow P(n)$ is true ### P.17 Lemma: Every $u,v$-walk contains a $u,v$-path $pf.$ use **Strong Principle of Induction** * Basis step: l=0. - W contains a single vertex (a length-0 path). * Induction step: l≥1. - Case 1. No repeated vertex. - Case 2. W has a repeated vertex w.(把多走的路拿掉) ### P.18 Connected graph G * Connected - Def: $\forall u,v \in V(G),\ \exists u,v-path$ - 探討的是**點**的關係 - **ordered pairs (u,v)**: 描述這兩點是connected + 可以(u,u) + (u,v)和(v,u)不同 * Connected component - Def: **maximal connected** subgraph - ![](https://i.imgur.com/YadQojU.png =30%x) - connected 關係滿足 equivalence relation - Equivalence classes : {1,2,3,4,5}, {6,7} ### P.19 Connected Component * component = maximal connected subgraph * Trival component: has no edges * Isolated vertex: vertex of degree 0 ### P.20 $Proposition$: graph with $n$ vertices and $k$ edges has **at least** $n-k$ components * $pf.$ each edge reduces at most 1 component - edge從0條開始,每次多加一個edge進去,最多只會減少一個component * 最少加n-1 個邊(ex: tree) $\to$ connected graph ### P.21 cut-edge, cut vertex * $Def$ : an edge or vertex whose deletion increases the number of components. ### P.22 Induced Subgraph $G[T]$ * $T\subseteq V(G)$ * $G[T]=\{T,E_T\}$ * $E_T=\{u,v\in E(G):u\in T,v\in T \} \\ (T點之間的所有的edge都要留著)$ ### P.23 Biconditional statements 三種 $P\Rightarrow Q$的等價表示 Note: Truth table