# Definitions ###### tags: `圖論def` ### Set Definition * X is **proper subset** of A (X是A的subset,但不等於A) $$ X \subsetneq A $$ * **Partition** 定義: $$ A_i \cap A_j = \emptyset\ \ \forall i \neq j \ \ , \ \bigcup_y A_i =A \forall$$ * **symetric difference** of A and B : **AΔB** * Note: A xor B $$ A \Delta B =(A \cup B) - (A \cap B) $$ ![](https://i.imgur.com/5L8qqIN.png) * k-tuple $$ A^k = \{ (x_1,...,x_k): x_i \in A \} $$ $$When A=\{0,1\},A^k \ is \ the \ set \ of \ binary \ k-tuples. $$ ### Quantifiers & Proofs * **Universal** quantifier ∀ (For all ...) $$ (\forall x \in S) P(x) $$ * **Existential** quantifier ∃ (For some ...) $$(\exists x \in S) P(x)$$ * **Negation** of quantified statements: - $$\neg[(\forall x \in S) P(x)] \ same \ as \ (\exists x \in S) (\neg P(x)) $$ - $$\neg[(\exists x \in S) P(x)] \ same \ as \ (\forall x \in S) (\neg P(x)) $$ * logical definition ![](https://i.imgur.com/a9Pj3oV.png) * $$ P \Rightarrow Q \ is \ (\neg P) \lor Q$$ * Note: 真值表 | | P | ¬P | | :-----: |:--: |:--: | | **Q** | 1 | 1 | | **¬Q** | 0 | 1 | * **Sufficient V.S. Necessary** >[color=#ff0000] > >Sufficient: >如果給定句子的真偽,要讓 Q 的 value 可以被評估的話 >至少 P 要是 true >(P 是 true 時,「足以」近一步判斷 Q 值 與句子的真偽) > >Necessary: >如果知道 P 是 true,那麼 Q 必須是 true, >否則句子是 false > >[name=MathematiKai ] :+1: :100: :smile: :satisfied: :cry: :laughing: >