# 2020-04-24 Trees & Distance I (Cont.) ###### tags: `圖論` [複習](https://hackmd.io/NDx_b8BxSyOIfg6sokUXXQ?both#P12) [video](https://www.youtube.com/watch?v=HPABA5pL4Yo&list=PL8xY3250v6CSrLIsKMFLyrCfWonR1STtt&index=7) ## P.14 Theorem 2.1.13 * center: the set of nodes $v$ such that $\epsilon(v)=rad(G)$ * The center of a tree is a vertex or an edge :::info <font color=#000000> $proof$: By **Strong Induction**: * Basic: $n(T)≤2$, the center is the entire tree. * Induction step $n(T)>2$ $T': T \setminus \{leaves ~ of ~ T\}$ $\Rightarrow \epsilon_{T'}(u)=\epsilon_{T}(u)-1 ~~\forall u \in T'$ (把$T$的$leaf$全部砍掉就代表所有點的eccentricity都減1,也就代表center不變,然後不斷重複直到base case) (砍掉leaf之後,依照induction,剩下的tree其center還是vertex或edge,不過center砍掉leaf之後不會變,$Q.E.D.$) </font> ::: ## P.15 - P.18 Wiener index & $Theorem ~ 2.1.14$ * $Define$: Wiener index of $G$: $D(G)=\sum_{u,v\in V(G)}d_G(u,v)(distance)$ * Theorem : D(T) is minimized by stars and maximized by paths :::info <font color=#000000> $proof$: ### Minimum(star): ![](https://i.imgur.com/YMWoXxU.png =40%x) 在所有pair of vertices中,長度為1: $n-1$個 剩下的pair長度至少為2 就算假設他不是star,但是任一點到其他點的距離是2的話(neighbor除外),代表有一個點是所有點的common neighbor ,那還是個star $D(K_{1, n-1}) = (n-1) + 2C^{n-1}_2 = (n-1)^2$ (距離1$\times$取1條的取法數$+$距離2$\times$取2條的取法數) ### Maximum(path): Basic: $n=1$, only one vertex $P_1$ Induction step: $D(T) = D(T-u) + \sum_{v\in V(T)}d(u,v)$ $D(T-u)≤D(P_{n-1})$ by hypothesis 因為$D(T-u)==D(P_{n-1}) \iff T-u\text{ is a path}$ 而要maximize $\sum_{v\in V(T)}d(u,v)$,則$u$必須是endpoint 所以$T$是path endpoint $u$到其他點的距離:$\sum_{i=0}^{n-1}i$ $D(P_n) = D(P_{n-1}) + \sum_{i=0}^{n-1}i$ </font> ::: ## P.19 * $Lemma ~ 2.1.15$ If $H$ is a subgraph of $G$, then $d_G(u,v)\leq d_H(u,v)$ ::: info <font color=#000000> $proof$: $u,v-path$ in $H$ appears in $G$, but $u,v-path$ in G doesn't really appear in $H$. (原本的路被拆了,所以只能繞路) </font> ::: * $Corollary ~ 2.1.16$ If $G$ is a connected $n$-vertex graph, then $D(G)\leq D(P_n)$ :::info <font color=#000000> $proof:$ by $Lemma ~ 2.1.15$ by [$Theorem ~ 2.1.14$](#P15---P18-Wiener-index-amp-Theorem--2114) $D(G) \leq D(T) \leq D(P_n)$ </font> ::: ## P.20 P.21 Prüfer Code * $Algorithm ~ 2.2.1$ ![](https://i.imgur.com/diLhm0y.png) ![](https://i.imgur.com/gpGOmgq.png) ![](https://i.imgur.com/qqS9QbS.gif) ## P.24 $Theorem ~ 2.2.3.$ Given Vertex set of size $n$, number of distinct tree is $n^{n-2}$ $proof:$ Prüfer code 種類數:從$n$種點選出$n-2$個排列,種類可重複