# 台大 105 軟體 ###### tags: `NTU` `105` `軟體` 1. DGCBCH 2. (a) $O(n^{log_83})$ (b) $O(lglgn)$ \(c\) $O(\frac{n^3}{\sqrt{M}})$ 3. (a) i. $O(1+\frac{n}{m})$ ii. recursively 是...open addressing 的意思??看不懂 (b) $m=O(n^2)$ :::info 兩個 element 衝突的機率為: $\binom{m}{1}\frac{1}{m^2}=\frac{1}{m}$ 期望值為 $\binom{n}{2}\frac{1}{m}=\frac{n(n-1)}{2}\frac{1}{m}=O(1)$ 得 $m=O(n^2)$ ::: \(c\) 略 4. (a) ```c= typedef struct node { int key; struct node *left; struct node *right; } node; bool verify(node *r) { if (r == NULL) return true; return verify(r->left) && verify(r->right) && (r->left == NULL || r->left->key <= r->key) && (r->right == NULL || r->right->key >= r->key); } ``` (b) ```c= int count(int n) { if (n <= 1) return 1; int result = 0; for (int i = 0; i < n; i++) { result += count(i) * count(n - i - 1); } return result; } ``` :::info n 個點的二元搜尋樹的數量為第 n 個卡特蘭數 ::: \(c\) :::info B / \ / \ R B / \ \ B B R / R ::: 5. 略 6. 令 $\Phi(H)=$ 所有節點的深度總和 - INSERT: $lgn + lgn=O(lgn)$ <= 因為多了一個深度為 $lgn$ 的節點 - EXTRACT-MIN: $lgn - lgn=O(1)$ <= 因為少了一個深度為 $lgn$ 的節點 7. (a) (1) 0 (2) 1 (3) $L(i + 1, j - 1) + 2$ (4) $max(L(i + 1, j), L(i, j - 1))$ (b) 略
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up