# 台大 104 軟體 ###### tags: `NTU` `104` `軟體` 1. ABBBBBBBBA 2. (1) $2^i$ (2) $2^{k+1}-1$ (3) $n_0\le \frac{n-n_2}{2} + 1$ :::info 假設 $n_1=$ 度數為1的點數量,$n_2,n_3$ 以此類推。$n$ 為總數量。 則 $n_1+n_2+n_3=n$ 且 $n_1=n_3+2$ 可得$$ n_1+n_2+n_1-2=n\\ 2n_1+n_2=n+2\\ n_1=\frac{n-n_2}{2}+1 $$ 如果根有兩個子節點,則$n_0=n_1$,反之 $n_0=n_1-1$。因此可得 $n_0\le n_1=\frac{n-n_2}{2}+1$ ::: (4) floor($lg(n+1)$) + 1 (5) $n+1$ (7) 21 / 171 4. (1) $O(nlgn)$ (2) $O(n^2)$ (3) {1,2,3,4,5,6} 5. (1) $O(V^2)$ (2) $O(V^{1.5}lgV)$ (3) $O(V^{1.5})$ :::info (1) 找出離 current minimum spanning tree 最近的點需要 $O(V)$、輪迴 O(V) 次。更新每個點的最近距離需要 $O(E)$。總共為 $O(V^2+E)=O(V^2)$ (2) 找出離 current minimum spanning tree 最近的點需要 $O(lgV)$、輪迴 $O(V)$ 次,更新每個點的最近距離需要 $O(ElgV)$,總共為 $O(VlgV+ElgV)=O(V^{1.5}lgV)$ (3) 承上,但是更新最近距離需要 $O(E)$,總共為 $O(VlgV + V^{1.5})=O(V^{1.5})$ ::: 6. (1) $O(NlgN)$ (2) $O(Nlg^2N)$ (3) $O(N^2)$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up