Math 182 Miniproject 4 The Volume of a Football.md
---
Math 182 Miniproject 4 The Volume of a Football
===
**Overview:** In this project we find exact formulas for integral approximations using Riemann sums of various flavors.
**Prerequisites:** Section 6.2 of _Active Calculus_.
Go to https://www.desmos.com/calculator/c7aip1g33m to see a regulation size football image. (All units are inches.)
1. Using your graph plotting kung fu, find a curve that approximates the boundary of (at least part of) the football.

2. Set up an integral expression that will give the volume of the football.
$y=-0.099999x^{2}+3.35$
$x=±\sqrt{\frac{3.35}{0.099999}}$ or $±5.7879473912$
$$\int_{-5.7879473912}^{5.7879473912}\pi\left(0.099999x^{2}-3.35\right)^{2}dx$$
3. Use Desmos to find the value of your integral. What is the volume of the football?
$V=\int_{-5.7879473912}^{5.7879473912}\pi\left(0.099999x^{2}-3.35\right)^{2}dx$
$=\pi\int_{-5.7879473912}^{5.7879473912}\left(0.099999x^{2}-3.35\right)^{2}dx$
$=\left[\pi\left(0.00199996x^{5}-0.2233311x^{3}+11.2225x\right)\right]_{-5.7879473912}^{5.7879473912}$
$= \left(\pi\left(0.00199996\left(5.7879473912\right)^{5}-0.2233311\left(5.7879473912\right)^{3}+11.2225\left(5.7879473912\right)\right)\right)-\left(\pi\left(0.00199996\left(-5.7879473912\right)^{5}-0.2233311\left(-5.7879473912\right)^{3}+11.2225\left(-5.7879473912\right)\right)\right)$
$=217.667097093$ in$^3$.
___
To submit this assignment click on the __Publish__ button. Then copy the url of the final document and submit it in Canvas.