Math 181 Miniproject 3: Texting Lesson.md
---
My lesson Topic
===
<style>
body {
background-color: #eeeeee;
}
h1 {
color: maroon;
margin-left: 40px;
}
.gray {
margin-left: 50px ;
margin-right: 29%;
font-weight: 500;
color: #000000;
background-color: #cccccc;
border-color: #aaaaaa;
}
.blue {
display: inline-block;
margin-left: 29% ;
margin-right: 0%;
width: -webkit-calc(70% - 50px);
width: -moz-calc(70% - 50px);
width: calc(70% - 50px);
font-weight: 500;
color: #fff;
border-color: #336699;
background-color: #337799;
}
.left {
content:url("https://i.imgur.com/rUsxo7j.png");
width:50px;
border-radius: 50%;
float:left;
}
.right{
content:url("https://i.imgur.com/5ALcyl3.png"); width:50px;
border-radius: 50%;
display: inline-block;
vertical-align:top;
}
</style>
<div id="container" style=" padding: 6px;
color: #fff;
border-color: #336699;
background-color: #337799;
display: flex;
justify-content: space-between;
margin-bottom:3px;">
<div>
<i class="fa fa-envelope fa-2x"></i>
</div>
<div>
<i class="fa fa-camera fa-2x"></i>
</div>
<div>
<i class="fa fa-comments fa-2x"></i>
</div>
<div>
<i class="fa fa-address-card fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-phone fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-list-ul fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-user-plus fa-2x" aria-hidden="true"></i>
</div>
</div>
<div><img class="left"/><div class="alert gray">
Consider the function $h(x)=x^3+3x^2-3$
Find the formula of the tangent line when $x=2$.
</div></div>
<div><div class="alert blue">
In order to solve this problem it is essential to take the derivative of the function.
Looking at $h(x)$, we notice that the function is written in a way which we are able to apply the power rule ($h'\left(x\right)=nx^{n-1}$).
</div><img class="right"/></div>
<div><div class="alert blue">
Functions are not always conveniently written in this form, so it essential to have some sort of grasp for solving the limit definition of the derivative for the function.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
$h'(x)=3x^2+6x$
</div></div>
<div><div class="alert blue">
Correct
</div><img class="right"/></div>
<div><div class="alert blue">
Now we must use the point slope form of a line to slove the problem
</div><img class="right"/></div>
<div><div class="alert blue">
$y=h(x)+h'(x)(x-a)$
</div><img class="right"/></div>
<div><div class="alert blue">
Since the problem is asking for the formula of the tangent line at a specific input for $x$ ($x=2$) we must insert the number $2$ in the place of $x$ for both $h(x)$ and $h'(x)$
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
$L(x)=h(2)+h'(2)(x-2)$
</div></div>
<div><img class="left"/><div class="alert gray">
$L(x)=[2^3+3(2)^2-3]+[3(2)^2+6(2)](x-2)$
</div></div>
<div><img class="left"/><div class="alert gray">
$L(x)=[8+12-3]+[12+12](x-2)$
</div></div>
<div><img class="left"/><div class="alert gray">
$L(x)=17+24(x-2)$
</div></div>
<div><div class="alert blue">
Impressive
</div><img class="right"/></div>
<div><div class="alert blue">
With this particular formula, we are now able to approximate the outputs for $h(x)$ close to $x=2$, such as $x=2.01$.
</div><img class="right"/></div>
<div><div class="alert blue">
Keep note that inputs for $x$ closest to $x=2$ will provide the most correct approximation of the tangent line.
</div><img class="right"/></div>
<div><div class="alert blue">
Now that we know the formula for the tangent line for $h(x)$ at $x=2$, lets find the approximation for $x=2.02$.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
$h(2.02)$ ~ $L(2.02)$
</div></div>
<div><img class="left"/><div class="alert gray">
$L(2.02)=17+24(2.02-2)$
</div></div>
<div><img class="left"/><div class="alert gray">
$L(2.02)=17+24(2.02-2)$
</div></div>
<div><img class="left"/><div class="alert gray">
$L(2.02)=17.48$ ~ $h(2.02)$
</div></div>
---
To submit this assignment click on the Publish button . Then copy the url of the final document and submit it in Canvas.