Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Consider the function $h(x)=x^3+3x^2-3$ Find the formula of the tangent line when $x=2$. </div></div> <div><div class="alert blue"> In order to solve this problem it is essential to take the derivative of the function. Looking at $h(x)$, we notice that the function is written in a way which we are able to apply the power rule ($h'\left(x\right)=nx^{n-1}$). </div><img class="right"/></div> <div><div class="alert blue"> Functions are not always conveniently written in this form, so it essential to have some sort of grasp for solving the limit definition of the derivative for the function. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $h'(x)=3x^2+6x$ </div></div> <div><div class="alert blue"> Correct </div><img class="right"/></div> <div><div class="alert blue"> Now we must use the point slope form of a line to slove the problem </div><img class="right"/></div> <div><div class="alert blue"> $y=h(x)+h'(x)(x-a)$ </div><img class="right"/></div> <div><div class="alert blue"> Since the problem is asking for the formula of the tangent line at a specific input for $x$ ($x=2$) we must insert the number $2$ in the place of $x$ for both $h(x)$ and $h'(x)$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $L(x)=h(2)+h'(2)(x-2)$ </div></div> <div><img class="left"/><div class="alert gray"> $L(x)=[2^3+3(2)^2-3]+[3(2)^2+6(2)](x-2)$ </div></div> <div><img class="left"/><div class="alert gray"> $L(x)=[8+12-3]+[12+12](x-2)$ </div></div> <div><img class="left"/><div class="alert gray"> $L(x)=17+24(x-2)$ </div></div> <div><div class="alert blue"> Impressive </div><img class="right"/></div> <div><div class="alert blue"> With this particular formula, we are now able to approximate the outputs for $h(x)$ close to $x=2$, such as $x=2.01$. </div><img class="right"/></div> <div><div class="alert blue"> Keep note that inputs for $x$ closest to $x=2$ will provide the most correct approximation of the tangent line. </div><img class="right"/></div> <div><div class="alert blue"> Now that we know the formula for the tangent line for $h(x)$ at $x=2$, lets find the approximation for $x=2.02$. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $h(2.02)$ ~ $L(2.02)$ </div></div> <div><img class="left"/><div class="alert gray"> $L(2.02)=17+24(2.02-2)$ </div></div> <div><img class="left"/><div class="alert gray"> $L(2.02)=17+24(2.02-2)$ </div></div> <div><img class="left"/><div class="alert gray"> $L(2.02)=17.48$ ~ $h(2.02)$ </div></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.