Math 181 Miniproject 11: Riemann Sums.md --- --- tags: MATH 181 --- Math 181 Miniproject 11: Riemann Sums === **Overview:** This miniproject focuses on the use of $\sum$-notation to estimate the area under a curve. Students will use Desmos to set up and evaluate Riemann sums to get the area under a curve that is not amenable to the Fundamental Theorem of Calculus. **Prerequisites:** Section 4.3 of *Active Calculus.* --- :::info For this miniproject you will be estimating the area under the curve $$ f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1} $$ from $x=1$ to $x=10$. ![](https://i.imgur.com/h56UdIm.png) Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later. (1) Evaluate $R_3$ using Desmos. ::: $Δx= \frac{b-a}{n}$ $Δx= \frac{10-1}{3}$ $Δx= 3$ $3(f(4)+f(7)+f(10))$ $𝑅_3=10.7820774995$ :::info (2) Evaluate $M_3$ using Desmos. ::: $Δx= 3$ $3(f(2.5)+f(3.5)+f(8.5))$ $M_3=14.4752543066$ :::info (3) Evaluate $L_9$ using Desmos. ::: $Δx= 3$ $3(f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9))$ $L_4=56.4694595643$ :::info (4) Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos. ::: $Δx= \frac{9}{n}$ $x_1=1+Δx$ $x_2=1+2Δx$ $x_3=1+3Δx$ $x_k=1+2kΔx$ Thus, the area of the Kth rectangle is: $f(x_k)Δx$ $=f(1+k\frac{9}{n})\frac{9}{n}$ $\sum_{k=1}^{n}f(1+k\frac{9}{n})\frac{9}{n}$ $\sum_{n=1}^{100}f(1+n(0.09))(0.09)$ $R_100=15.7677319241$ :::info (5) Evaluate $R_{1000}$ using Desmos. ::: $Δx= \frac{9}{n}$ $x_1=1+Δx$ $x_2=1+2Δx$ $x_3=1+3Δx$ $x_k=1+2kΔx$ Thus, the area of the Kth rectangle is: $f(x_k)Δx$ $=f(1+k\frac{9}{n})\frac{9}{n}$ $\sum_{k=1}^{n}f(1+k\frac{9}{n})\frac{9}{n}$ $\sum_{n=1}^{1000}f(1+n(0.009))(0.009)$ $R_1000=15.9945370554$ :::info (6) Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$. ::: $Δx= \frac{9}{n}$ $x_1=1+Δx$ $x_2=1+2Δx$ $x_3=1+3Δx$ $x_k=1+2kΔx$ Thus, the area of the Kth rectangle is: $f(x_k)Δx$ $=f(1+k\frac{9}{n})\frac{9}{n}$ $\sum_{k=1}^{n}f(1+k\frac{9}{n})\frac{9}{n}$ --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.