# Advanced Algebra 《高等代数》(第四版), 北京大学数学系前代数小组, 高等教育出版社, 2013 年 [TOC] --- ## Chapter1 Polynomial ### Bézout's Identity #### For the pair of integers Let $$ a,b \in \mathbb Z \wedge gcd(a,b)=d, $$ then $$ \exists x, y \in \mathbb Z, $$ such that $$ ax + by = d. $$ #### For three or more polynomials Given that $\mathcal F$ refers to the univariate polynomial ring. Let $$ \{f_i\} \subset \mathcal F \wedge \gcd(\{f_i\})=u, $$ then $$ \exists \mathcal \{g_i\} \subset \mathcal F, $$ such that $$\sum_{f_i,\ g_i} f_i(x)g_i(x)=u(x).$$ ### Theorem 6 (multiplying polynomials) Given that $p(x)$ is irreducible, then $$ p(x)^k \mid f(x)(k \ge 1) \Rightarrow p'(x)^{k-1} \mid f'(x). $$ #### Counter example for ⇐ Let $$ p(x)=f'(x)=x+1, $$ so $$ f(x)=\frac{1}{2} x^2+x. $$ Obviously, $p(x) \nmid f(x)$. #### Corollary 6.1 Given that $p(x)$ is irreducible, $$ p(x)^k \mid f(x)(k \ge 1) \Leftrightarrow p(x) \mid \gcd(f(x),f'(x)). $$ **_Note that_** $$ p(x)^k \mid f'(x)(k \ge 1) \Leftarrow p(x) \mid \gcd(f(x),f'(x)). $$ #### Corollary 6.2 Given that $\mathcal F$ refers to the univariate polynomial ring, then $$ \forall p \in \mathcal F-\{0\}, \exists p(x) \nmid f(x) \Leftrightarrow \gcd(f(x), f'(x)). $$ ### [Fundamental Theorem of Algebra](https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra) Every **non-constant** **single-variable** polynomial with **complex** coefficients has **at least** one **complex** root. #### Corollary 1 Given that $$ \alpha \in \mathcal C \wedge f(x)=\sum_{\{a_i\} \subset \mathbb C}a_ix^i, $$ then $$ \alpha \mid f(\alpha) \Leftrightarrow \overline{\alpha} \mid f(x). $$ **_Proof._** $$ 0=\overline{f(a)}=\sum_{\{a_i\} \subset \mathbb C}\overline{a_i \alpha^i}=\sum_{\{a_i\}\subset \mathbb C}a_i \overline{\alpha^i}=f(\overline{a}) $$ $\square$ #### Corollary 2 (Real coefficient polynomial factorization theorem) Given that $$ f(x)=\sum_{\{a_i\} \subset \mathbb R-\{0\},\ j \in \mathbb N} a_i x^j, $$ then it can be factored into the unique irreducible muplying polynomials up to quadratic. ### Definition 8.5 Primitive Polymial Given that $$ f(x)=\sum_{\{a_i\} \subset \mathbb Z-\{0\},\ j \in \mathbb N} a_i x^j, $$ if $\gcd(\{a_i\})=\pm 1$, then the polynomial $f$ is called _primitive_. ### Gauss's Lemma #### Lemma1 If $f(x)$ and $g(x)$ are primitive polynomials over the integers, then product $f(x)g(x)$ is also primitive. #### Lemma2 A non-constant polynomial in $Z[X]$ is irreducible in $Z[X]$ if and only if it is both irreducible in $Q[X]$. #### Lemma3 Let $f(x)$, $g(x)$ are non-constant polynomials in $Z[X]$, and $f(x)=g(x)h(x)$, if $g(x)$ is primitive, then $h(x)$ is in $Q[X]$. ### Eisenstein's Criterion Given that $$ f(x)=\sum_{\{a_i\} \subset \mathbb Z-\{0\},\ 0 \le i \le n} a_i x^i, $$ if there is a prime $p$, such that 1. $p \nmid a_n;$ 2. $p \mid a_{n-1},a_{n-2},...,a_0;$ 3. $p^2 \nmid a_0;$ then $f$ is irreducible $Q[X]$. ### Fundamental Theorem of Symmetric Polynomials Every symmetric polynomial $P(x_1,...,x_n) \in A[x_1,...,x_n]^{S_n}$ has a unique representation $$ P(x_1,...,x_n)=Q(e_1(x_1,...,x_n),...,e_n(x_1,...,x_n)), $$ in which $$ e_i(x_1,...,x_n)=\sum_{\{0 \lt k_1 \lt k_2... \lt k_i \le n\}}\prod x_{k_j} $$ ### Univariable Polynomial Discriminant Let $$ A(x)=\sum_{i=0}^n a_n x^n \wedge A(x)=a_n \prod_{i=1}^n (x-x_i), $$ according to the previous theorem, $$ \exists D=\prod_{i \lt j} x_i-x_j=Q(e_1(x_1,...,x_n),...,e_n(x_1,...,x_n)) $$ then Q is called the discriminant of the polynomial, where the polynomial has multiple roots if and only if the $D=0.$ Under the lower degree cases: $$ D_2=a_1^2-4 a_0 a_2, $$ $$ D_3=a_1^2 a_2^2-4a_0 a_2^3-4a_1^3 a_3-27a_0^2 a_3^2 +18a_0 a_1 a_2 a_3 $$ ### Exercise #### C2 Given that $$ \partial(\frac{f(x)}{\gcd(f(x),g(x))}) \gt 0 \wedge \partial(\frac{g(x)}{\gcd(f(x),g(x))}) \gt 0, $$ prove that $$ \exists u(x),v(x) \wedge u(x)f(x)+v(x)g(x)=\gcd(f(x),g(x)), $$ s.t. $$ \partial(u(x)) \lt \partial(\frac{f(x)}{\gcd(f(x),g(x))}), $$ $$ \partial(v(x)) \lt \partial(\frac{g(x)}{\gcd(f(x),g(x))}). $$ **_Proof._** Obviously, $\exists u_1,v_1$, s.t. $$ u_1(x)f(x)+v_1(x)g(x)=\gcd(f(x),g(x)). $$ Let $$ u_1(x)=\frac{f(x)}{\gcd(f(x),g(x))}q(x)+u(x), $$ $$ v_1(x)=-\frac{g(x)}{\gcd(f(x),g(x))}q(x)+v(x), $$ s.t. $$ \partial(u(x)) \le \partial(\frac{f(x)}{\gcd(f(x),g(x))}). $$ $\because u(x) \neq 0$, or $\partial(\frac{g(x)}{\gcd(f(x),g(x))})=0$, then $$ \partial(u(x)) \lt \partial(\frac{f(x)}{\gcd(f(x),g(x))}), $$ vice versa. $\square$ ### Lagrange Interpolation Formula Given the polynomial $L(x)$, s.t. $L(a_i)=b_i(i=1,2,...,n)$. Let $$ F(x)=\prod_{i=1}^n(x-a_i), $$ then $$ L(x)=\sum_{i=1}^n \frac{b_i F(x)}{(x-a_i)F'(a_i)} $$ **\*Can be constructed from a very geometry perspective!!!** Consider that let $$ f(x)=\frac{F(x)}{(x-a_i)F'(a_i)} $$ $$ f(a_i)=1 \wedge \forall a_j(j \neq i),\exists f(a_j)=0 $$ ### [Newton Identities](https://app.yinxiang.com/shard/s24/nl/24842916/96920c73-ebca-46ae-8162-15d824eb2831/) ## Chapter2 Determinant ### Vandermonde Determinant Given n-order determinant $$ d= \begin{vmatrix} 1 & 1 & 1 & \cdots & 1\\ a_1 & a_2 & a_3 & \cdots & a_n\\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2\\ \vdots & \vdots & \vdots & & \vdots\\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1}\\ \end{vmatrix}_{n \times n}, $$ we have the following conclusion $$ d=\prod_{1 \le j \lt i \le n}(a_i-a_j) $$ ### [Laplace Expansion](https://app.yinxiang.com/shard/s24/nl/24842916/1cf416fa-863d-4fd6-bbaf-fcda9f6a468b/) ### Excercise #### C3.1 Prove that $$ \begin{vmatrix} a_{11}+x & a_{12}+x & \cdots & a_{1n}+x\\ a_{21}+x & a_{22}+x & \cdots & a_{2n}+x\\ \vdots & \vdots & & \vdots\\ a_{n1}+x & a_{n2}+x & \cdots & a_{nn}+x\\ \end{vmatrix}_{n \times n}= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{vmatrix}_{n \times n} + x \sum_{i=1}^{n} \sum_{j=1}^{n}A_{ij}. $$ **_Proof._** Left $$ \begin{vmatrix} a_{11}+x & a_{12}+x & \cdots & a_{1n}+x & 0\\ a_{21}+x & a_{22}+x & \cdots & a_{2n}+x & 0\\ \vdots & \vdots & & \vdots & \vdots\\ a_{n1}+x & a_{n2}+x & \cdots & a_{nn}+x & 0\\ -x & -x & \cdots & -x & 1\\ \end{vmatrix}_{(n+1) \times (n+1)} $$ $$ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1\\ a_{21} & a_{22} & \cdots & a_{2n} & 1\\ \vdots & \vdots & & \vdots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} & 1\\ -&-&-&-&-\\ -x & -x & \cdots & -x & 1\\ \end{vmatrix}_{(n+1) \times (n+1)}=Right(Use\ Laplace\ Expansion) $$ $\square$ --- ## Chapter3 Simultaneous Linear Equations --- ## Chapter4 Matrix ### Theorem 1 (|AB|=|A||B|) Given square matrices $A$ and $B$ of equal size, the $$ |AB|=|A||B|. $$ **_Proof._** $$ |A||B|= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{vmatrix}_{n \times n} \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n}\\ b_{21} & b_{22} & \cdots & b_{2n}\\ \vdots & \vdots & & \vdots\\ b_{n1} & b_{n2} & \cdots & b_{nn}\\ \end{vmatrix}_{n \times n} $$ $$ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 0 & 0 & \cdots & 0\\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 0 & \cdots & 0\\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 0\\ -1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n}\\ 0 & -1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n}\\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn}\\ \end{vmatrix}_{2n \times 2n} $$ $$ \begin{vmatrix} 0 & 0 & \cdots & 0 & c_{11} & c_{12} & \cdots & c_{1n}\\ 0 & 0 & \cdots & 0 & c_{21} & c_{22} & \cdots & c_{2n}\\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & 0 & c_{n1} & c_{n2} & \cdots & c_{nn}\\ -1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n}\\ 0 & -1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n}\\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn}\\ \end{vmatrix}_{2n \times 2n} $$ $$ \begin{vmatrix} c_{11} & c_{12} & \cdots & c_{1n}\\ c_{21} & c_{22} & \cdots & c_{2n}\\ \vdots & \vdots & & \vdots\\ c_{n1} & c_{n2} & \cdots & c_{nn}\\ \end{vmatrix}_{n \times n} $$ $$ \begin{vmatrix} \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{matrix} \right)_{n \times n} \left( \begin{matrix} b_{11} & b_{12} & \cdots & b_{1n}\\ b_{21} & b_{22} & \cdots & b_{2n}\\ \vdots & \vdots & & \vdots\\ b_{n1} & b_{n2} & \cdots & b_{nn}\\ \end{matrix} \right)_{n \times n} \end{vmatrix} (Use\ Laplace\ Expansion) $$ $\square$ ### Definition 9 Adjugate Matrix Given a square matrix $$ A= \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{matrix}x \right)_{n \times n}, $$ let $A_{ij}$ is the _algebraic cofactor_ of $a_{ij}$, then $$ A^*= \left( \begin{matrix} A_{11} & A_{12} & \cdots & A_{1n}\\ A_{21} & A_{22} & \cdots & A_{2n}\\ \vdots & \vdots & & \vdots\\ A_{n1} & A_{n2} & \cdots & A_{nn}\\ \end{matrix} \right)_{n \times n}. $$ We can get that $$ AA^*=A^*A= \left( \begin{matrix} d & 0 & \cdots & 0\\ 0 & d & \cdots & 0\\ \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & d\\ \end{matrix} \right)_{n \times n}= dE, $$ in which $d=|A|$. If $d=|A| \neq 0$, then $$ A(\frac 1 d A^*)=(\frac 1 d A^*)A=E $$ ### Theorem 3 (Invertibility) Matrix $A$ is invertible $\Leftrightarrow d=|A| \neq 0$ (A is _non-degenerate_ or _non-singular_). If $A$ is invertible, then $$ A^{-1}=\frac 1 d A^* $$ ### Another Proof for Cramer's Rule Given the simultaneous linear equations $$ \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_1\\ ...\\ a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n=b_1\\ \end{cases}, $$ which can be written as $$ AX=B, $$ if $|A| \neq 0$, then we can get the unique $X=A^{-1}B=\frac 1 d A^*B$. ### LU Decomposition (Lower–Upper Decomposition) Given $A=(a_{ij})_{n \times n} \neq 0$, where $$ \begin{vmatrix} a_{11} & \cdots & a_{1k}\\ \vdots & & \vdots\\ a_{k1} & \cdots & a_{kk}\\ \end{vmatrix} \neq 0, 1 \le k \le n, $$ then $\exists$ lower triangle matrix $B_{n \times n}$, such that $$ BA=Upper\ triangle\ matrix. $$ **_Proof._** Use MI (Mathematical Induction), the statement holds for $n=1$. Assume $n-1$ holds, then $$ For \ A_1= \left( \begin{matrix} a_{11} & \cdots & a_{1,n-1}\\ \vdots & & \vdots\\ a_{n-1,1} & \cdots & a_{n-1,n-1}\\ \end{matrix} \right), $$ $$ \exists \ Lower\ triangle\ matrix\ (B_1)_{(n-1) \times (n-1)}, \ s.t. B_1A_1=Upper\ triangle\ matrix. $$ $A$ can be partitioned into $$ A= \left( \begin{matrix} A_1 & \beta\\ \alpha & a_{nn}\\ \end{matrix} \right), $$ then $$ BA= \left( \begin{matrix} B_1 & O\\ -\alpha A^{-1} & 1\\ \end{matrix} \right) \left( \begin{matrix} A_1 & \beta\\ \alpha & a_{nn}\\ \end{matrix} \right)= \left( \begin{matrix} B_1 & O\\ O & 1\\ \end{matrix} \right) \left( \begin{matrix} E & O\\ -\alpha A^{-1} & 1\\ \end{matrix} \right) \left( \begin{matrix} A_1 & \beta\\ \alpha & a_{nn}\\ \end{matrix} \right) $$ $$ \left( \begin{matrix} B_1 & O\\ O & 1\\ \end{matrix} \right) \left( \begin{matrix} A_1 & \beta\\ O & -\alpha A^{-1} \beta + a_{nn}\\ \end{matrix} \right)= \left( \begin{matrix} A_1 B_1 & B_1 \beta\\ O & -\alpha A^{-1} \beta + a_{nn}\\ \end{matrix} \right) (Upper\ triangle\ matrix) $$ $\square$