# 專題報告
## DataBase:
* **資料夾:**
每個資料夾都有一般的CT Dicom檔案
* clinicalParameters : 應該是一些病人的資料,但要密碼需要跟對方詢問看看
* ILD_DB_volumeROIs : volume labels. Different value stand for different symptom. Have 17 value.(healthy=1, emphysema=2, ground_glass=3, fibrosis=4...)
* ILD_DB_txtROIs : Each folder contains DICOM images and a .txt file containing annotations.
* ILD_DB_talismanTestSuite : A fixed validation suite,
1. healthy: 3011
2. emphysema: 407
3. ground_glass: 2226
4. fibrosis: 2962
5. micronodules: 5988
* ILD_DB_lungMasks : CT Dicom and Mask Dicom.

CT Dicom to JPG

CT Masked Dicom to JPG
* **病人數量:**
* 113個病人
* 幾乎都有三十張左右的肺部切片
## 影像前處理:
* **GrayScale Thresholding :**
* 利用cv2的Threshold_Binary,藉由調整threshold value來改善灰階影像的呈現



### 圖一



### 圖二
* **Edge detection :**
* Canny edge detection:
Canny edge 來畫出邊界(contour),並把想要的邊界取出即可做出masked image


## DATA Description:
* 醫生的資料統整
* 
* Lin Doctor (ILD ' Normal lung CT Folder)
* ILD
* 067(1),120(2),163(3),192(4),195(5)
* Normal
* 006(11),011(12),016(13)
* Wu Doctor(test folder)
* ILD
* 196(6),023(7),076(8),034(9),197(10)
* Normal
* Normal_01(14),Normal_02(15)
* ILD(735),Normal(436)
## TRAIN MODEL
* 將資料依照訓練和測試的不同組合,分別做三次不同的訓練
* 為了評估模型預測準確率的範圍
## COMBINATION_ONE
### Train
<!-- *  -->
* 
* **accuracy:1.0**
### Test
<!-- *  -->
* 
* **accuracy:0.85**
<!-- * 002_train.h5 -->
## -----------------------------------------------------------
## COMBINATION_TWO
### Train
<!-- *  -->
<!-- *  -->
* 
* **accuracy:1.0**
### Test
<!-- *  -->
* 
* **accuracy:0.93**
<!-- * 005_train.h5 -->
## -----------------------------------------------------------
## COMBINATION_THREE
### Train
* 
* **accuracy:0.806**
### Test
<!-- *  -->
* 
* **accuracy:0.56**
<!-- * 014_train.h5 -->
## CAM output
* 利用前面訓練好的模型,觀察模型在意的特徵
* 利用HEATMAP標示出來
* 圖片中顏色越明顯的代表模型覺得是重要的圖片特徵
### **With ILD**
* 
<!-- * 1_19 -->
* 
<!-- * 5_23 -->
* 
<!-- * 7_23 -->
* 
<!-- * 9_23 -->
### **Without ILD**
* 
<!-- * 11_35 -->
* 
<!-- * 12_35 -->
* 
<!-- * 13_15 -->
* 
<!-- * 14_35 -->