# 專題報告 ## DataBase: * **資料夾:** 每個資料夾都有一般的CT Dicom檔案 * clinicalParameters : 應該是一些病人的資料,但要密碼需要跟對方詢問看看 * ILD_DB_volumeROIs : volume labels. Different value stand for different symptom. Have 17 value.(healthy=1, emphysema=2, ground_glass=3, fibrosis=4...) * ILD_DB_txtROIs : Each folder contains DICOM images and a .txt file containing annotations. * ILD_DB_talismanTestSuite : A fixed validation suite, 1. healthy: 3011 2. emphysema: 407 3. ground_glass: 2226 4. fibrosis: 2962 5. micronodules: 5988 * ILD_DB_lungMasks : CT Dicom and Mask Dicom. ![](https://i.imgur.com/jsjM2Wv.jpg) CT Dicom to JPG ![](https://i.imgur.com/k4Y1fej.jpg) CT Masked Dicom to JPG * **病人數量:** * 113個病人 * 幾乎都有三十張左右的肺部切片 ## 影像前處理: * **GrayScale Thresholding :** * 利用cv2的Threshold_Binary,藉由調整threshold value來改善灰階影像的呈現 ![](https://i.imgur.com/2BdgtjU.jpg) ![](https://i.imgur.com/GoHa0Kq.jpg) ![](https://i.imgur.com/R4ZqEcg.jpg) ### 圖一 ![](https://i.imgur.com/iQd3qlT.jpg) ![](https://i.imgur.com/vdW8ULe.jpg) ![](https://i.imgur.com/FoR5Dfh.jpg) ### 圖二 * **Edge detection :** * Canny edge detection: Canny edge 來畫出邊界(contour),並把想要的邊界取出即可做出masked image ![](https://i.imgur.com/sNYWbY6.jpg) ![](https://i.imgur.com/8JNfvpr.jpg) ## DATA Description: * 醫生的資料統整 * ![](https://i.imgur.com/Rztfsgd.png) * Lin Doctor (ILD ' Normal lung CT Folder) * ILD * 067(1),120(2),163(3),192(4),195(5) * Normal * 006(11),011(12),016(13) * Wu Doctor(test folder) * ILD * 196(6),023(7),076(8),034(9),197(10) * Normal * Normal_01(14),Normal_02(15) * ILD(735),Normal(436) ## TRAIN MODEL * 將資料依照訓練和測試的不同組合,分別做三次不同的訓練 * 為了評估模型預測準確率的範圍 ## COMBINATION_ONE ### Train <!-- * ![](https://i.imgur.com/8dyP2ow.jpg) --> * ![](https://i.imgur.com/ETIdnfa.jpg) * **accuracy:1.0** ### Test <!-- * ![](https://i.imgur.com/XagCIhB.png) --> * ![](https://i.imgur.com/bVuZf7i.jpg) * **accuracy:0.85** <!-- * 002_train.h5 --> ## ----------------------------------------------------------- ## COMBINATION_TWO ### Train <!-- * ![](https://i.imgur.com/aN35f6k.png) --> <!-- * ![](https://i.imgur.com/spUaoeu.jpg) --> * ![](https://i.imgur.com/lE5cn8d.jpg) * **accuracy:1.0** ### Test <!-- * ![](https://i.imgur.com/Tb2sIxq.jpg) --> * ![](https://i.imgur.com/VH6V2bn.jpg) * **accuracy:0.93** <!-- * 005_train.h5 --> ## ----------------------------------------------------------- ## COMBINATION_THREE ### Train * ![](https://i.imgur.com/3sxXteA.jpg) * **accuracy:0.806** ### Test <!-- * ![](https://i.imgur.com/YZYo2Y7.jpg) --> * ![](https://i.imgur.com/ohUkJnl.jpg) * **accuracy:0.56** <!-- * 014_train.h5 --> ## CAM output * 利用前面訓練好的模型,觀察模型在意的特徵 * 利用HEATMAP標示出來 * 圖片中顏色越明顯的代表模型覺得是重要的圖片特徵 ### **With ILD** * ![](https://i.imgur.com/HhZ76zZ.jpg) <!-- * 1_19 --> * ![](https://i.imgur.com/8HvlLCN.jpg) <!-- * 5_23 --> * ![](https://i.imgur.com/5xzgGXe.jpg) <!-- * 7_23 --> * ![](https://i.imgur.com/7rlRkdu.jpg) <!-- * 9_23 --> ### **Without ILD** * ![](https://i.imgur.com/BG5AQsX.jpg) <!-- * 11_35 --> * ![](https://i.imgur.com/IKO9yPl.jpg) <!-- * 12_35 --> * ![](https://i.imgur.com/Tnsc3Kh.jpg) <!-- * 13_15 --> * ![](https://i.imgur.com/nWgJqbr.jpg) <!-- * 14_35 -->