###### tags: `NDDL`, `code` # Comparing LTC-SN model formulas with code This note serves to compare the implementation of the LTC-SN model with the description of the model in the paper 'Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time'. ***Model*** ![](https://i.imgur.com/X9xW3bm.png) Note that the update formulas for $u_t$ lead to a strange multiplication factor of $2\alpha-1$. ***Code*** def forward(self, x_t, mem_t, spk_t, b_t): if self.is_rec: dense_x = self.layer1_x(torch.cat((x_t, spk_t), dim=-1)) else: dense_x = self.layer1_x(x_t) tauM1 = self.act1(self.layer1_tauM(torch.cat((dense_x, mem_t), dim=-1))) tauAdp1 = self.act1(self.layer1_tauAdp(torch.cat((dense_x, b_t), dim=-1))) mem_1, spk_1, _, b_1 = mem_update_adp( dense_x, mem=mem_t, spike=spk_t, tau_adp=tauAdp1, tau_m=tauM1, b=b_t ) return mem_1, spk_1, b_1 def mem_update_adp(inputs, mem, spike, tau_adp, tau_m, b, dt=1, isAdapt=1): """ Parameters: - mem : membrane potential - spike : 0 or 1, whether there was a spike - tau_adp : time-constant for decay of the threshold - tau_m : time-constant for decay of the membrane potential - b : parameter for adaptive change of the firing threshold theta - dt : [NOT USED] - isAdapt : 0 or 1, whether neuron uses adaptive threshold """ # Alpha expresses the single time-step decay of the membrane potential # with time-constant tau_m alpha = tau_m # Ro expresses the decay single-timestep decay of the threshold # with time-constant tau_adp ro = tau_adp # Beta is a constant that controls the size of adaptation of the threshold; # We set beta to 1.8 for adaptive neurons as default if isAdapt: beta = 1.8 else: beta = 0.0 # B is a dynamical threshold comprised of a fixed minimal threshold b_j0 # and an adaptive contribution beta x b b = ro * b + (1 - ro) * spike B = b_j0 + beta * b # Update membrane potential d_mem = -mem + inputs mem = mem + d_mem * alpha # Use approximation firing function to generate a spike, or not inputs_ = mem - B spike = ActFun_adp.apply(inputs_) # Reset mem to zero after spike mem = (1 - spike) * mem return mem, spike, B, b ***Comparing model and code*** | | Model | Code | | --- | --- | --- | | $\tau_{adp}update$ | $\rho = \exp(-dt/\tau_{adp})$ <br> $= \sigma(Dense_{adp}[x_t, b_{t-1}]$ | `tauAdp1 = self.act1( self.layer1_tauAdp( torch.cat((dense_x, b_t), dim=-1)))`| | $\tau_{m}update$| $\alpha = \exp(-dt/\tau_{m})$ <br> $= \sigma(Dense_{m}[x_t, u_{t-1}]$ | `tauM1 = self.act1( self.layer1_tauM( torch.cat((dense_x, mem_t), dim=-1)))`| | | Perform update| `mem_update_adp(...)` | | | | `alpha = tau_M1` <br> `ro = tau_Adp1` | | $\theta_t update$ | $b_t = \rho b_{t-1} + (1-\rho) S_{t-1}$ <br> $\theta_t = 0.1 + 1.8 b_t$ | `b = ro * b + (1-ro) * spike` <br> `B = b_j0 + beta * b` | | $u_t update$| $du = -u_{t-1} + x_t$ <br> $u_t = \alpha u_{t-1} + (1-\alpha) du$| `d_mem = -mem + inputs` <br> `mem = alpha * d_mem + mem`| | spike $s_t$| $s_t = f_s(u_t, \theta)$ | `inputs_ = mem - B` <br> `spike = ActFun_adp.apply(inputs_)` | | resetting | $u_t=u_t (1-s_t) + u_{rest} s_t$ | `mem = (1 - spike) * mem` | ***Observations*** :::info Need to use:`b_j0 = 0.1` , `beta = 1.8` and $u_{rest} = 0$ ::: :::danger Code and model description for the $u_t update$ do not seem to be equivalent! 1. model description: $u_t = \alpha u_{t-1} + (1-\alpha) du$ $= \alpha u_{t-1} + (1-\alpha) (-u_{t-1} + x_t)$ $= \alpha u_{t-1} -u_{t-1} + \alpha u_{t-1} + x_t -\alpha x_t$ $= (2 \alpha - 1) u_{t-1} + (1-\alpha) x_t$ 2. code: `mem = alpha * d_mem + mem` `= alpha * (-mem + inputs) + mem` `= -alpha * mem + alpha * inputs + mem` `= (1 - alpha) * mem + alpha * inputs` 3. substitute: $\alpha = 1 -$ `alpha` $u_t = (2 (1-$ `alpha` $) - 1) u_{t-1} + (1 - (1 -$ `alpha` $) x_t$ $=(1 - 2$ `alpha` $)u_{t-1} +$ `alpha` $x_t$ So the update of $u_t$ as defined in the model is not equivalent to the update of `mem` in the code. :::