# Numerical Analysis HW2 (Due 10/29) ###### tags: `Numerical Analysis` ### Q1 Let | |$x_0$|$x_1$|$x_2$|$x_3$| |--|---|---|---|---| |$x$| -0.75 | -0.5 |-0.25| 0 | |$f(x)$| -0.07181250| -0.02475000| 0.33493750|1.0101| 1. Construct the Lagrange interpolating polynimials of degree 2 with the given data $P_{0,1,2}, P_{1,2,3}, P_{2,3,0}$ 2. Construct the Lagrange interplating polynomials of degree 3 with $P_{0,1,2}$ and $P_{1,2,3}$ Neville's Method (Sec 3.2) --- ### Q2 Let |$x$| -1.2| -0.9 |-0.6| -0.3|0| |---|---|---|---|---|---| |$f(x)$| 0.1823| -0.1051| -0.5103 |-1.204|-3.121| Using Newton backward difference formula to approximate $f(-0.2)$ #### Sol Let $h = 0.3$, $\displaystyle-0.2 = 0-\frac{2h}{3}$ $P_4(-0.2) = P_4(0-2h/3)\approx -1.6389$ --- ### Q3 Let |$x$| -2| -1 |0| 1 |2|3| |---|---|---|---|---|--|--| |$f(x)$| 1| 4| 11 |16|13|-4| Show that the polynimial interpolating the following data has degree 3. Method 1: supposed $f(x) = ax^4+bx^3+cx^2+d$ Method 2: Since Lagrange interpolating polynomial is a unique interpolating polynomial with given degree. Consider the lagrange polynomial that interpolates all the given nodes. Method 3: Vis the table of finite difference --- ### Q4 Show that $f[x_0,x_1,x_2\cdots, x_n ,x] = \displaystyle \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$ for some $\xi(x)$. Generalized version of Thm 3.6 (P.125) --- ### Q5 Derive the error term in Theorem 3.9. Please refer to p.110 --- ### Q6 1. Write a **function** that implement the Neville's Iterated Interpolation algorithm, and verify with the following data. |$x$| 1.0 | 1.3 |1.6| 1.9 |2.2| |--|---|---|---|---|---| |$f(x)$| 0.7651977| 0.6200860| 0.4554022|0.2818186|0.1103623| [hint] You may refer to table 3.6 2. **Graph** and **construct** the cubic bazier polynomials given the following points and guide points. (You also need to show your function code which implement the algorithm) |points| (1,1) | (6,2) | |--|---|---| |guide points| (1.5,1.25)|(7,3)|