# Numerical Analysis HW3 ###### tags: `Numerical Analysis` ## Q1 We know that the tuncation error of forward difference formula to approximate $f'(x)$ is of $O(h)$ with step size $h$. $$ \tau_h = \left[\frac{f(x+h)-f(x)}{h}\right]-f'(x) = \frac{f''(\xi)}{2}h = O(h) $$ Please derive the formulas of $f'(x)$ with the given order of truncation error. $O(h^2), O(h^3), O(h^4)$ **[hint]** for $O(h^3), O(h^4)$ you may use extrapolation method. 先推出二階 $\rightarrow$ 四階 (外插) 利用一階 $\rightarrow$ 三階 (外插) --- ## Q2 Please determine the precision of Trapezoidal Rule and Simpson Rule. 決定性因素在最後的誤差,如果誤差項有2階微分,代表1階精度 $(x)'' = 0$ --- ## Q3 Please derive the Simpson's Three-Eights rule. **[hint]** p.196 Newton Cotes formula --- ## Q4 Find the constants $c_0, c_1, x_1$ such that the quadrature formula has the highest possible degree of precision. $$ \displaystyle \int_0^1 f(x)dx = c_0f(0)+ c_1f(x_1) $$ **[hint]** 給兩個點,考慮插值多項式 --- ## Q5 1. Please derive the first few Legendre polynomials: $P_0, P_1, P_2, P_3, P_4$ 2. Please evaluate $\displaystyle\int_{-1}^1 x^5+x^2+1 dx$ p.231 thm 4.7 --- ## Q6 Please show that the quadurate formula $Q(P) = \displaystyle\sum_{i=1}^nc_iP(x_i)$ cannot have degree of precision greator than $2n-1$, regardless of choice of $c_1\cdots c_n, x_0\cdots x_n$. 假設有deg = 2n,各個點都是平方次方,討論$Q(P) >0? <0?$ --- ## Q7 Use the method of undetermined coefficients to set up the 5 × 5 Vandermonde system that would determine a fourth-order accurate finite difference approximation to $u''(x)$ based on 5 equally spaced points $$ u''(x) = c_{−2}u(x − 2h) + c_{−1}u(x − h) + c_0u(x) + c_1u(x + h) + c_2u(x + 2h) + O(h^4) $$ 每個去泰勒展開,然後解方程式。 --- ## Trick or Treat [萬聖節禮包](https://weblis.lib.ncku.edu.tw/search~S1*cht/X?searchtype=X&searcharg=isaacson+and+keller+analysis+of+numerical+methods+&searchscope=1) **[Isaacson & Keller]** Analysis of Numericl methods p.308 Newton Cotes formula $\lipsum[5]$