# Numerical Analysis HW1 (Due 10/6)
###### tags: `Numerical Analysis`
### Q1
Find the rate of convergence of the following sequence as $n\rightarrow\infty$
$\mbox{(a)}$ $\displaystyle \sin\frac{1}{n}$$,$ $\mbox{(b)}$ $\displaystyle\sin\frac{1}{n^2}$$,$ $\mbox{(c)}$ $\displaystyle \left(\sin\frac{1}{n}\right)^2$
#### Sol
**p.34**
------
### Q2
* Find the number of multiplication and additions are required to determine a sum of the form
$$
\displaystyle\sum_{i=1}^n\sum_{j=1}^ia_ib_j
$$
* Give an algorithm to reduce the number of computations
#### Sol
*
* 請寫下演算法
```
For i=1...n :
do ...
end for...
```
------
### Q3
* The following methods are proposed to compute $21^{1/3}$, rank them in order, bases on there apparent speed of convergence, with $p_0=1$, and show your numerical result of convergence with $\displaystyle\frac{|p_n-21^{1/3}|}{21^{1/3}}<1e-2$.
1. $p_n = \displaystyle\frac{20p_{n-1}+21/p_{n-1}^2}{21}$
2. $p_n = p_{n-1}-\displaystyle\frac{p_{n-1}^3-21}{3p_{n-1}^2}$
3. $p_n = p_{n-1}-\displaystyle\frac{p_{n-1}^4-21p_{n-1}}{p_{n-1}^2-21}$
4. $p_n = \left(\displaystyle\frac{21}{p_{n-1}}\right)^{1/2}$
#### Sol
Let $f(x) = (20x+21/x^2)/21, x-(x^3-21)/3x^2 \cdots$
然後比較微分在區間內的大小
------
<!-- ### Q4
* Show that the nontrivial fixed point of the equation
$$9x = x^3$$
for $x\in\left[0,\infty\right]$, is unstable, that is you cannot find the nontrivial fixed point by using the fixed point iteration $9x_{n+1} = x_n^3$
* Develope a new fixed point iteration method that is stable for finding the solution of the previous equation.
#### Sol
..
:::info
fixed point iteration 的穩定性課本好像沒寫
:::
------
-->
### Q5
* Let $p$ be the root of $f(x) = 0$, with $f$ is at least $C^2$, please show that the Newton Method for finding the root of $f$ is atleast quadratic.
* Show that the rate of convergence of secent method is $\displaystyle\frac{1+\sqrt{5}}{2}$
#### Sol
**p.80**
------
### Q6
Please use Newton method for finding the root of $f(x) = x(x-1)^2$ where $p_0 = 1.5$.
#### Sol
**p.83**
------
### Q7
A sequence $\left\{p_n\right\}$ is said to be superlinear convergent to $p$ if
$$
\lim_{n\rightarrow\infty} \displaystyle\frac{|p_{n+1}-p|}{|p_n-p|}=0
$$
* Show that if $p_n\rightarrow p$ in order $\alpha>1$, then $\left\{p_n\right\}$ is superlinear convergent to $p$.
* Show that $p_n = \frac{1}{n^n}$ is super linear convergent to 0 but doesn't convergent to 0 of order $\alpha>1$.
#### Sol
Since $\alpha>1$, leads $|p_n-p|^{\alpha-1}\rightarrow 0$
------
### Q8 (程式題)
In this problem, you should write functions(Code) for Newton method and secent method and paste in here.
Use Newton method and Secant to find solution accurate to within TOL = $10^{-5}$ for the following problems.
On the other hand,
* $2x\cos(2x)-(x-2)^2=0 \mbox{ for } x\in \left[2,3\right]\mbox{ and }\left[3,4\right]$
* $e^x-3x^2 = 0 \mbox{ for } x\in \left[0,1\right], \left[3,4\right]\mbox{ and }\left[6,7\right]$
#### Sol
##### Code requirement
Please write a function named as newton, with input (p0, TOL) and output solution
Please write a function named as secant, with input (p0, p1, TOL) and output solution
For example:
```[python]
def newton(p_0, TOL):
for i in range(100):
p = p_0*i+TOL
p_0 = p
return p_0
```
------