$$ \frac{\sum_{station} \#Rainy\ Days\ with\ Animal\ Struck}{\sum_{station} \#Rainy\ Days} = 0.1038 $$ $$ \frac{1}{N} \sum_{station} \frac{\#Rainy\ Days\ with\ Animal\ Struck}{\#Rainy\ Days} = 0.0961 $$ $$ \frac{\#Rainy\ Days\ with\ Animal\ Struck}{\#Rainy\ Days} = \frac{30}{135} = 0.2222 $$ --- $$ \frac{\sum_{station} \#rainy\ with\ overcrowd\ days}{\sum_{station} \#rainy\ days} = 0.3225 $$ $$ \frac{\#rainy\ with\ overcrowd\ days}{\#rainy\ days} = \frac{110}{135} = 0.8148 $$ --- $$ y = \frac{\log_e \left( \frac{X}{M}-s \cdot a \right) }{r^2} $$ $$ yr^2 = \log_e \left( \frac{X}{M}-s \cdot a \right) $$ $$ e^{yr^2} = \frac{X}{M}-s \cdot a $$ $$ Me^{yr^2} = X - Ms \cdot a $$ $$ Me^{rry} = X - Mas $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up