# Invariant Federated Learning ## Dataset: ICU ### Arithmetic Mean Total training round: 10 Training epochs: 30/Round Total clients: 38 Feature selection: 256    ROC score: 0.512 Precision: 0.066 Recall: 0.209 F1 Score: 0.101 PR AUC: 0.059 ### Geometric Mean Total training round: 10 Training epochs: 30/Round Total clients: 38 Feature selection: 256    ROC score: 0.480 Precision: 0.047 Recall: 0.269 F1 Score: 0.081 PR AUC: 0.0466 ### And Mask Total training round: 10 Training epochs: 30/Round Total clients: 38 Feature selection: 256    ROC score: 0.514 Precision: 0.055 Recall: 0.9013 F1 Score: 0.103 PR AUC: 0.061 ## Dataset: MNIST (Binary Classification for 0 and 1) ### Arithmetic Mean Total training round: 10 Training epochs: 10/Round Total clients: 10    ROC score: 0.9998141862863036 Precision: 1.0 Recall: 0.9955533596837944 F1 Score: 0.997771725674672 PR AUC: 0.999837476363806 ### Geometric Mean Total training round: 10 Training epochs: 10/Round Total clients: 10    ROC score: 0.9998477201531499 Precision: 0.5336842105263158 Recall: 1.0 F1 Score: 0.6959505833905285 PR AUC: 0.9998632198426646 ### And Mask Total training round: 10 Training epochs: 10/Round Total clients: 10    ROC score: 0.9999265585723632 Precision: 0.9975704567541303 Recall: 0.9985408560311284 F1 Score: 0.9980554205153136 PR AUC: 0.9999375948846042
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up