# Sample Exam A --- ### **1.** **a)** Determine the largest possible domain of the following function. $$ f(x) = \arcsin \frac{2x-3}{7} - \sqrt{4 - 3x} $$ **b)** Determine the inverse function of the folloing function. $$ f(x) = e^{2x - 7} + 5 $$ --- ### **2.** **a)** Determine the limit of the following sequence. $$ a_n = \frac{2^{2n+3}-5}{3^{n-1} - 4^{n+2}} $$ **b)** Compute the following limit. $$ \lim_{x \to 1^-} \frac{x^2 + 3x - 2}{x^2 + 3x - 4}. $$ **c)** A function is defined on the domain $D_f = \mathbb{R} \setminus \{-1, 2\}$ with the following properties: * $\displaystyle\lim_{x \to -\infty} f(x) = 2$ * $\displaystyle\lim_{x \to -1} f(x) = 1$ * $\displaystyle\lim_{x \to 2^-} f(x) = -\infty$ * $\displaystyle\lim_{x \to 2^+} f(x) = \infty$ * $\displaystyle\lim_{x \to \infty} f(x) = \infty$ Draw a function with these properties. --- ### **3.** Find the derivative of the following functions. **a)** $$ f(x) = \sqrt{5x} \cdot \cos(3x) $$ **b)** $$ g(x) = \frac{x^2 - \ln x}{2^x} $$ **c)** $$ h(x) = \sin^4(3 - 2x) $$ --- ### **4.** Examine the function for monotonicity and extreme values. $$ f(x) = \frac{e^{-2x}}{x^2} $$ --- ### **5.** Find the equation(s) of the tangent line(s) to $$ f(x) = x^3 - 3x^2 - 11x + 8 $$ that are parallel to the line $$ 2x + y = 1. $$ --- ### **6.** **a)** $$ \int \frac{4x - \sqrt[3]{x }+ 3}{x^2} \ dx $$ **b)** $$ \int_0^1 2^{3x - 1} \ dx $$ --- ### **7.** **a)** $$ \int (3x + 7) \cdot \cos x\ dx $$ **b)** $$ \int \frac{1}{x - (\sqrt[3]{x })^2} \ dx $$ --- ### **8.** **a)** Determine the volume of the solid obtained by rotating the curve of $$ f(x) = \frac{2}{\sqrt[3]{2x-1}} $$ around the x-axis over the interval $$ [1, 14]. $$ **b)** Approximate $$ \int_0^{\pi / 6} \sin x \ dx $$ using the simple trapezoidal rule.