# Ensemble simulation for Ubinas (2019)
## Fix column height
### General configuration
- Start time: 19 July 2019, 07:00 UTC
- End time: 21 July 2019, 00:00 UTC
- Meteo data: ERA-5 (model levels)
- Domain size: 600x400x60
- Species: Tephra
### Source:
- Column height: 4 km avl (fixed)
- Type: TOP-HAT
- Start time: 19 July 2019, 07:00 UTC
- End time: 19 July 2019, 18:00 UTC
- Start time: 19 July 2019, 07:00 UTC
- MFR: ESTIMATE-DEGRUYTER
- Thickness: 1 km
- Maximum particle size: 12 $\mu m$
- Granulometry file:
```
0.011049 2300.0 0.900 0.296800505E-01 1 1 tephra fine_ash-06 T
0.007812 2300.0 0.900 0.163989677E-01 1 1 tephra fine_ash-07 T
0.005524 2300.0 0.900 0.806730489E-02 1 1 tephra fine_ash-08 T
0.003906 2300.0 0.900 0.353518749E-02 1 1 tephra fine_ash-09 T
0.002762 2300.0 0.900 0.137613813E-02 1 1 tephra fine_ash-10 T
0.001953 2300.0 0.900 0.679610383E-03 1 1 tephra fine_ash-11 T
```
### Ensemble:
- Column height perturbation:
- Perturbation type: Relative (35%)
- PDF: Uniform
- Wind perturbation:
- Perturbation type: Relative (20%)
- PDF: Uniform
### Results: Probability
*Snapshot:*

*Video:*
<iframe src="https://drive.google.com/file/d/1InvdAw0dTiRrbbkyQCHUXk4EfAECehKp/preview" width="640" height="480"></iframe>
### Results: Statistical estimators for column mass
Possible estimators:
1. Ensemble median ($x_1$)
1. Ensemble mean ($x_2$)
1. Minimal distance ($x_3$)
Typically, we have a very positively skewed distribution. In the next figure, very high values of the skewness are found in most of cases, except when the ensemble mean-to-spread ratio is greater than 1. In consequence, $x_1 \ll x_2$ for most of grid elements.

For the minimal distance estimator ($x_3$), we use the solution corresponding to the ensemble member which minimizes the distance:
$$
\min_i \sqrt{(x_i - \overline x)^2 + (y_i - \overline y)^2}
$$
where $x_i,y_i$ are the coordinates of the center of mass for the ensemble member $i$, and $\overline x,\overline y$ are the averaged coordinates of the center of mass.
Conclusions:
- Ensemble median: significantly underestimates column mass
- Ensemble mean: too diffusive
- Minimal distance: It has the advantage of being a physical solution. Members with large MFR/Column height do not have a greater weight (as $x_1$ and $x_2$).
*Snapshot:*
The paths of the center of mass are represented by red lines.

*Video:*
<iframe src="https://drive.google.com/file/d/1gp2aWpbYKYYz-OJAnjaJzI3ZSvSyhMn8/preview" width="640" height="480"></iframe>
## Variable column height
Column height timeseries:

### Ensemble:
- Column height perturbation:
- Perturbation type: Relative (35%)
- PDF: Uniform
- Wind perturbation:
- Perturbation type: Relative (20%)
- PDF: Uniform
### Results: Probability
*Snapshot:*

*Video:*
<iframe src="https://drive.google.com/file/d/11OsA6h8-GnoHPxTVRflm7g7uvJqkCJ-c/preview" width="640" height="480"></iframe>
### Results: Statistical estimators for column mass
*Snapshot:*

*Video:*
<iframe src="https://drive.google.com/file/d/1RBwPETYkkIvZCa0a9OeyNLvfjezlcBSa/preview" width="640" height="480"></iframe>