# CIM meeting ## 2024/07/18 ### Ginger Resnet18 CIM version floating 75.5% => CIM_train 71.1% Conv weight sacling => S = max advisor recommend: 要多小的LLM模型才行 ? 先從分類的開始 ### Xin-You Discuss new experiment analysis => measure end-to-end energy comsumption using FPGA's arm core ### 宗叡 ddpm and cimddpm model evalutaion on CIFAR-10 ### 嘉政 1. arrange 3D hand-object pose slide 2. 研究內視鏡設計圖 ### 佑鑫 1. 補論文實驗 => Lightweight Model 2. 口試投影片及論文第一版完成 Comparsion with RegTR Parameters Feature Encoder => CART Parameters +134% (因為 INPUT 的feature多兩倍) Transformer Cross Encoder => CART Parameters -84.3% Conclusion => 雖然網路提高30% 但 performance 提升70% ### 定芳 survey paper related to depth estimation 1. Mind the Edge => 預測邊界 2. The Devil is in the Edge => 結合Edge以及RGB data 來訓練 ## 2024/07/23 ### V3 version 晶片參數 1. Embedding dimension : 512 2. support number of head : (head 8 dim 64) or (head 16 dim 32) 3. fully connected = 512 * 512 4. activation and weight: 8 bits 5. Layer Norm : 512 6. 每次累加後若overflow何時quantization 還是未知 ? 7. softmax 有些是用lookup table 數字還未知 ? 8. 我們的 Pruning 方法是甚麼 Structure pruning or Unstructure pruning ? # 2024/07/26 ## 君哲 Post_train mobilennet CIM 61.8% floating 67.5% VIT with cifar-100, accuracy =>43.1% imagenet21K => too large solution => 1. model pruning 2. checking other methods input 32x32 ,patch 4x4, dim 有縮小 ,accuracy:43.1% Others results is bad,either. next: find 改 pretrain model ## Xin-You HPCA Version Editing update Comparsion with small model: CIM:1~2sec 純硬體 ,5~10sec (include preemption) Raspberry Pi 3: 10.5s ARM FPGA: 163.5s sending draft ## 廷剛 read paper 1. DeepCache: Accelerating Diffusion Models For Free 2. Cache Me if You Can: Accelerating Diffusion Models through Block Caching ## 宗叡 請假 ## 定芳 放到眼鏡上的sensor VR-headsets sensor comparsion 1. Apple Vision Pro 1. 2 high resolution camera 2. Lidar Scanner 2. Meata Quest Pro 1. additional hand controller DataL from ARkit: 1. hand tracking =>( resolution ? distance ?) 2. world sensing =>( resolution ? distance ?) survey: ZED1 specs => accuracy <2% up to 3m (~6cm) => accuracy 4% up to 15m advisor : What data we can gain from those VR sensor data(raw data) next: 1. find dataset metadata 2. based on 佑鑫 improve model=> more precision with camera ## 嘉政 Study implementation of HOISDF ## 佑鑫 Discuss advices from professors in defense # 2024/8/1 ## 君哲 Train ViT input 32x32 dim 768: 85.6% input 32x32 dim 512: 60.6% survey pruning paper RACS24 paper ## Xin-You HPCA editing ## 廷剛 paper survey one step generate picture SnapFusion MobileDiffusion ## 宗叡 survey evaluation metrics for image generation training conditional ddpm using cifar-10 (in progress) ## 定芳 1.VR-headsets depth data (apple 沒開源, meta quest 有api) => 需要 IR相機 和 IR光源 2. 找其他人的 work ## 嘉政 ## 佑鑫 1.Revised master thesis ## 貴鴻 1.study model pruning 2.survey and implement model pruning depgraph # 2024/8/8 ## 君哲 1. train from high precision model 2. activation bit influence little 3. weight bit influence a lot 3. Quantized ViT 85.6% -> 83.4% ## Xin-You ## 廷剛 ## 宗叡 ## 定芳 ## 嘉政 ## 佑鑫 ## 貴鴻 #2024 9/19 ## Xin-You 1. collect path planing on image dataset 2. DATE 2025 editing 3. CIM V2 platform building ## 廷剛 1. prepare poster for eccv 2. slimflow paper ## 宗叡 1. solving problem that ddim sample image quality ## 洪敏 1. calculate deep cache size 2. survey dd ## 貴鴻 1. cosine similarity v2 result 2. survey paper (2016 ~ 2021) ## 嘉政 modfiy code for hoisdf ## ㄉㄧ