# 參考資料 *大家蒐集到覺得有興趣的文獻 1. Explainable AI:From Theory to Mo7va7on, Applica7ons and Challenges * https://euads.org/wp-content/uploads/2019/09/xai_Lecture_12.09.2019-Giannotti_2.pdf 2. Limitations of Interpretable Machine Learning Methods * https://compstat-lmu.github.io/iml_methods_limitations/ 3. 手刻ALE * https://github.com/blent-ai/ALEPython 4. Partial Dependence Plots with PDPbox package * https://www.kaggle.com/dansbecker/partial-plots * https://pdpbox.readthedocs.io/en/latest/ ### 3/9 倚任副理推薦 - KDD'19 explainable AI 的介紹,有興趣可以看一下喔 [https://www.slideshare.net/KrishnaramKenthapadi/explainable-ai-in-industry-kdd-2019-tutorial?from_action=save](https://www.slideshare.net/KrishnaramKenthapadi/explainable-ai-in-industry-kdd-2019-tutorial?from_action=save) ### 6/3 松憲推薦 - https://arxiv.org/pdf/1909.13584.pdf ###### tags: `參考資料`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up