# 讀書會時程規劃 * 閱讀書籍 - Interpretable Machine Learning A Guide for Making Black Box Models Explainable. - 兩篇論文: https://arxiv.org/pdf/2001.02478.pdf https://arxiv.org/pdf/1909.03012.pdf * 書籍網址 https://christophm.github.io/interpretable-ml-book/ * 倚任副理建議直接先閱讀第五章和第六章 * 讀書計畫初稿如下表,從下週二開始分享,之後視情況可機動調整 | Chapter 5 Model-Agnostic Methods|負責組別|日期 | | -------- | -------- | -------- | |5.1 Partial Dependence Plot (PDP)|G1|3/3| |5.2 Individual Conditional Expectation (ICE)|G2|3/10| |5.3 Accumulated Local Effects (ALE) Plot|G3|3/17| |展示作業成果(PDP、ICE、ALE)|ALL|3/24| |5.4 Feature Interaction|G1|3/31| |5.5 Permutation Feature Importance|G2|4/14| |5.6 Global Surrogate|G3|4/21| |5.7 Local Surrogate (LIME)|G1|4/28| |5.8 Scoped Rules (Anchors)|G2|4/28| |5.9 Shapley Values|G3|5/5| |5.10 SHAP (SHapley Additive exPlanations)|G1|5/12| | Chapter 6 Example-Based Explanations|負責組別|日期 | | -------- | -------- | -------- | |6.1 Counterfactual Explanations|G2|5/19 | |6.2 Adversarial Examples |G3|5/26 | |6.3 Prototypes and Criticisms |G3 |6/2 | |6.4 Influential Instances | ALL|6/9 | ###### tags: `其他`