--- tags: 生物辨識 --- # Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection 握靠這名字也太長 ## Framework  ## Adaptive frequency features generation module (AFFGM)  - `RGB` images are transformed into `YCbCr` color space.   > 人眼細胞的感知能力分為`色彩`及`亮度` > 而人眼對`亮度`的敏感程度高為`色彩`的敏感程度 > `RGB` space 容易受到光源變動的影響,所以採用 `YCbCr` 將亮度切割 - `2D DCT` transformation 將空間轉換到`頻率`上,將高頻率空間進行壓縮及簡化 [DCT相關教學視頻](https://www.bilibili.com/video/BV17M4y1u7Ek?from=search&seid=3264094561220943602) ## Adaptive frequency information mining block (AFIMB)  - 三個 Conv - 一個 Max pooling - 兩個 linear layer ## Single-center loss (SCL) $$ L_{sc} = M_{nat}+max(M_{nat}-M_{man}+m\sqrt D, 0) $$ - $M_{nat}$:Natural Face 到 Center 的 ED. - $M_{man}$:Manipulated Face 到 Center 的 ED. $$ M_{nat} = \frac{1}{|\Omega_{nat}|}\sum_{i\in\Omega_{nat}}\|f_i-C\|_2 \\ M_{man} = \frac{1}{|\Omega_{man}|}\sum_{i\in\Omega_{man}}\|f_i-C\|_2 $$ - $C$:Center point of natural faces ### Total loss $$ L_{total}=L_{softmax}+\lambda L_{sc} $$  ## 筆記
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up