--- tags: 生物辨識 --- # Consistent Instance False Positive Improves Fairness in Face Recognition > 改善人臉識別的公平性 -> 解決不同人種間準確率不同的問題 ## Motivation ![](https://i.imgur.com/XD1X6rQ.png) ## Contribution 1. 提出false positive rate penalty loss來解決這個問題 2. 資料集不用標註每張照片的種族 ## Problem ![](https://i.imgur.com/g4sjSEF.png) ## Loss - Arcface $$ L_{arc} = -log\frac{e^{s \cdot G(cos(\theta_{y_i}))}}{e^{s \cdot G(cos(\theta_{y_i}))} + \Sigma^n_{j=1,j\neq y_i}e^{s\ cos \theta_{y_i}} } $$ - Instance FPR $$ \gamma^{+}_{i}=\frac{\sum_{j=1, j\neq y_i}^{n}I(cos \theta_j>T_u)}{n-1} $$ - weighted FPR $$ \bar{\gamma}^{+}_{i}=\frac{\sum_{j=1, j\neq y_i}^{n}I(cos \theta_j>T_u)cos\theta_j}{n-1} $$ - Arcface + false positive rate penalty loss $$ L = -log\frac{e^{s \cdot G(cos(\theta_{y_i}))}}{e^{s \cdot G(cos(\theta_{y_i}))} + \Sigma^n_{j=1,j\neq y_i}e^{s\ (cos \theta_{y_i}+\alpha\frac{\bar{\gamma}^{+}_{i}}{\gamma^{+}_{u}})} } $$ ## Algorithm ![](https://i.imgur.com/2gzCe1p.png) ## Result