--- tags: 生物辨識 --- # Feature Decomposition and Reconstruction Learning for Effective Facial Expression Recognition [B站資源](https://www.bilibili.com/video/BV1S5411w7Yo?p=3) ## Contribution - View the expression information as the combination of the shared information - Propose a novel Feature Decomposition and Reconstruction Learning - Feature Decomposition Network(FDN): face的特徵分解成latent feature的集合 - Feature Reconstruction Network(FRN): latent feature的重組成face的representation - Intra-feature Relation Modeling module (Intra-RM): - Assign intra-feature relation weight to each latent feature according to the importance of the feature - 將每一個latent feature給一個important weight, 並將important weight與latent feature相乘得到每一個latent feature的intra-aware feature - Inter-feature Relation Modeling module (Inter-RM): - Learn an Inter-feature Relation Weight (Inter-W) between intra-aware features based on GNN - 根據latent feature之間的距離, 得到每一個latent feature的inter-aware feature ![](https://i.imgur.com/CaInG3C.png) ## Pipeline of Feature Decomposition and Reconstruction Learning ### FDN - Decomposes the basic feature into a set of facial action-aware latent features - Basic feature of i-th facial image : $x_i$, j-th latent featur of i-th facial image $$ l_{i,j}=\sigma_{1}(W_{d_j}x_i), \mbox{for} j=1...M $$ - Compact Loss $$ L_{C}=\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}||l_{i,j}-c_{j}||^2_2 $$ ![](https://i.imgur.com/n52LR2j.png) ### FRN - Intra-RM - Intra-feature relation Weight $$ \alpha_{i,j}=||\sigma_2(W_{s_j}l_{i,j})||_1 $$ - intra-aware feature for the i-th facial image $$ f_{i,j}=\alpha_{i,j}l_{i,j}, \mbox{for} j=1...M $$ - distribution loss $$ L_{C}=\frac{1}{N}\sum_{i=1}^{N}||w_{i}-w_{k_i}||^2_2 $$ where $w_{i}=[\alpha_{i1}, \alpha_{i2}, ..., \alpha_{iM}]$, $w_{k_i}$denotes the class center corresponding to the ki-th expression category. - balance Loss $$ L_{B}=||\bar{w}-w_u||_1 $$ where $\bar{w}=[\bar{\alpha}_{1}, \bar{\alpha}_{2}, ..., \bar{\alpha}_{M}]$ and $w_u=[\frac{1}{M}, \frac{1}{M}, ...., \frac{1}{M}]$ - Inter-RM - First fed into a message network for feature encoding $$ g_{i,j}=\sigma_{1}(W_{e_j}f_{i,j}), \mbox{for} j=1...M $$ - The relation importance between the node $g_{i,j}$ and the node $g_{i,m}$ $$ w_{i}(j,m) = \begin{cases} \sigma_3(S(g_{i,j}, g_{i,m})), & j\neq m \\ 0, & \mbox{otherwise} \end{cases} $$ - j-th inter-aware feature of i-th image $$ \hat{f}_{i,j}=\sum_{m=1}^{M}w_{i}(j,m)g_{i,m}, \mbox{for} j=1...M $$ - final expression feature $$ y_{i}=\sum_{j=1}^{M}\delta f_{i,j}+(1-\delta) \hat{f}_{i,j} $$ ### Total Loss $$ L=L_{cls}+\lambda_{1}L_{C}+\lambda_{2}L_{B}+\lambda_{3}L_{D} $$