--- tags: 生物辨識 --- # face image quality assessment ## Motvation * 人工標記人臉資料的品質是很麻煩又非常容易出錯的 * 不是要分辨出人看起來清晰的圖像,還是要找出模型可以正確判斷的 ## Method #### SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness [github](https://github.com/pterhoer/FaceImageQuality) 透過dropout層產出隨機不同embedding,兩兩計算產生質量分數 ![](https://i.imgur.com/W0Uxlji.png) 分數計算公式如下 ![](https://i.imgur.com/ca5eDFb.png) ![](https://i.imgur.com/CxpjQQA.png) #### SDD-FIQA: Unsupervised Face Image Quality Assessment with Similarity Distribution Distance [github](https://github.com/Tencent/TFace/tree/quality) 對每一張圖片隨機選m個類內及m個類外,利用Wasserstein Distance算出分數 ![](https://i.imgur.com/zZ6fzAK.png) [Wasserstein Distance](https://zhuanlan.zhihu.com/p/353418080) Quality Model:將Recognition model拿掉embedding layer和classification layer加上一個fully-connected layer並利用Huber loss訓練 ![](https://i.imgur.com/eK5TBlE.png) ![](https://i.imgur.com/uFjYmMv.png)