--- tags: 生物辨識 --- # face image quality assessment ## Motvation * 人工標記人臉資料的品質是很麻煩又非常容易出錯的 * 不是要分辨出人看起來清晰的圖像,還是要找出模型可以正確判斷的 ## Method #### SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness [github](https://github.com/pterhoer/FaceImageQuality) 透過dropout層產出隨機不同embedding,兩兩計算產生質量分數  分數計算公式如下   #### SDD-FIQA: Unsupervised Face Image Quality Assessment with Similarity Distribution Distance [github](https://github.com/Tencent/TFace/tree/quality) 對每一張圖片隨機選m個類內及m個類外,利用Wasserstein Distance算出分數  [Wasserstein Distance](https://zhuanlan.zhihu.com/p/353418080) Quality Model:將Recognition model拿掉embedding layer和classification layer加上一個fully-connected layer並利用Huber loss訓練  
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up