--- tags: Human Face --- # SSH (2017) SSH: Single Stage Headless Face Detector ## Contribution 1. One stage anchor-based face detector 2. scale-invariant 網路架構 (不用設計image pyramid) 3. headless 網路架構 (fully convnets, 參數少) ## Network Architecture ![](https://i.imgur.com/ALlWJb6.png) 1. Convs 1-1~5-3為VGG16的Block 1~5 ![](https://i.imgur.com/PVrtGlp.png) 2. Input shape of tensor before detection module |Detction module| M1 | M2 | M3 | | -------- | -------- | -------- | -------- | | Input Shape (224, 224, 3) | (28, 28, 128) | (14, 14, 512)| (7, 7, 512)| | Input Shape (h, w, 3) | (h/8, w/8, 128) | (h/16, w/16, 512)| (h/32, w/32, 512)| > input的feature map長寬越大, 目標偵測的人臉越小 3. 針對偵測小臉的branch使用FCN的特徵融合方法增加feature - 多拿一個conv layer的output的feature map當做偵測小臉branch的input 4. Detection and context module - 為了增加CNN的receptive field, 使用類似google net的方法新增5x5和7x7的conv - 為了節省記憶體消耗, 用兩個3x3的conv代替5x5的conv, 用三個3x3的conv代替7x7的conv ![](https://i.imgur.com/r5aifb1.png) - detection module ![](https://i.imgur.com/lAFXDko.png) - context module ![](https://i.imgur.com/iaOzrUZ.png) - mix ![](https://i.imgur.com/pwTklF7.png) - Google Net (inception block) ![](https://i.imgur.com/d1jES6p.png) 5. Anchor設計 - 僅使用一種比例的anchor(1:1) - 針對不同的目地使用不同的anchor box size | Detction module | input feature map size | anchor | | --------------- | ---------------------- | -------------- | | M1 | (h/8, w/8, 128) | 16X16, 32X32 | | M2 | (h/16, w/16, 512) | 64X64, 128X128 | | M3 | (h/32, w/32, 512) | 256X256, 512X512 | ## Training - positive and negative anchor setting - IOU(gt, anchor) > 0.5 -> positive anchor - IOU(gt, anchor) < 0.3 -> negative anchor - others -> ignores - loss function $$ \sum_{k}\frac{1}{N_k^c}\sum_{i\in A_{k}}l_{c}(p_{i}, g_{i})+\lambda\sum_{k}\frac{1}{N_k^r}\sum_{i\in A_{k}}I(g_{i}=1)l_{r}(b_{i}, t_{i}) $$ - $A_{k}$ represents the set of anchors defined in $M_{k}$ - $l_{c}$ is face classification loss (multinomial logistic loss) - $l_{r}$ is bounding box regression loss (smooth l1 loss) - $l_{r}$ 僅針對positive anchor - OHEM ## Experiments - Ablation studies ![](https://i.imgur.com/ccLBCbY.png)