--- tags: 生物辨識 --- # Suppressing Uncertainties for Large-Scale Facial Expression Recognition ## Problem to solve - Annotating a qualitative large-scale facial expression dataset ![](https://i.imgur.com/QfH1SJe.png) - ambiguous facial expressions - low-quality facial images - the subjectiveness of annotators ## Contribution - 提出了一個Self-Cure Network(SCN)去減少不確定性的影響 - 設計了一個self-attention的機制使得SCN可以學到重要和有意義的feature - 並利用self-attention的機制重新標注uncertained data ![](https://i.imgur.com/YWsgJP5.png) ## Pipeline of Self-Cure Network - Extract the deep features by a backbone network, let $F$ denotes the facial features of $N$ images. $$ F = [x_1,x_2,...,x_N]\in \mathbb{R}^{N\times D} $$ - Self-Attention Importance Weighting - Let $\alpha_{i}$ denote the importance weight of the i-th sample, $W_\alpha$ is the parameters of the FC layer used for attention, $\sigma$ is the sigmoid function. $$ \alpha_{i}=\sigma(W_\alpha^Tx_{i}) $$ - Logit-Weighted Cross-Entropy Loss $$ L_{WCE} = - \frac{1}{N} \sum_{i=1}^{N}log(\frac{e^{\alpha_{i}W_{y_{i}}^Tx_{i}}}{\sum_{j=1}^{C}e^{\alpha_{i}W_{j}^Tx_{i}}}) $$ - Rank Regularization - rank the learned attention weights in descending order and then split them into two groups with a ratio β, $M=βN$ $$ L_{RR} = max(0, \delta_1-(\alpha_{H}-\alpha_{L})), \alpha_{H}=\frac{1}{M}\sum_{i=1}^{M}\alpha_{i},\alpha_{L}=\frac{1}{N-M}\sum_{i=M}^{N}\alpha_{i} $$ - total loss $$ L_{total} = \gamma L_{WCE} + (1-\gamma)L_{RR} $$ - Relabeling Mechanism $$ y_{new} = \begin{cases} l_{max}, & \mbox{if}P_{max}-P_{gtInd}>\delta_{2} \\ l_{org}, & \mbox{otherwise} \end{cases} $$ ## Experiments - Visualization of the learned importance weights in SCN ![](https://i.imgur.com/6DmIcLO.png)