--- tags: 生物辨識 --- # Single-Side Domain Generalization for Face Anti-Spoofing ## 目的 Poor generalization to unseen domains > 484有點像 [這個](https://hackmd.io/Fqw4C0VmTnu9DA7xMHd9MQ) ## Contributions - 學習真實人臉的特徵分布 (單邊) - single-side adversarial learning 區分真假人臉 - asymmetric triplet loss 分別對真假人臉優化 ## Framework  ### Single-Side Adversarial Learning  > 2015 ICML Unsupervised Domain Adaptation by Backpropagation $$ Z_{r} = G_r(X_r),\ Z_{f} = G_f(X_f)\\ \min\limits_{D}\max\limits_{G}L_{Ada}(G,D)=-E_{x,y~X_r,Y_D}\sum^N_{n=1} \unicode{x1D7D9}_{[n=y]}\log D(G(x)) $$ ### Asymmetric Triplet Mining  $$ \min\limits_{G} L_{AsTrip}(G)=\sum_{x_i^\alpha,x_i^p,x_i^n}(\|f(x_i^\alpha)-f(x_i^p)\|^2-\|f(x_i^\alpha)-f(x_i^n)\|^2+\alpha) $$ ## 連結 [GITHUB](https://github.com/taylover-pei/SSDG-CVPR2020) [Deep Learning for Face Anti-Spoofing: A Survey](https://arxiv.org/pdf/2106.14948.pdf) [Survey GITHUB](https://github.com/ZitongYu/DeepFAS)
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up