--- tags: 生物辨識 --- # Generalized Presentation Attack Detection: a face anti-spoofing evaluation proposal 制定一個統一的標準去評估人臉防偽模型的泛化性 > 現在大家的方法幾乎都會綁定到特定的資料集上面 - 設計實驗模擬真實場景。 - ## Contributions - Largest dataset - anti-spoofing: attacks, lighting, capture devices and resolution. - We release an open-source evaluation framework. - We demonstrate the limitation of current dataset evaluation procedures. - We introduce two novel protocols for the GPAD problem. 1. Cross-FaceResolution 2. Cross-Conditions ## Generalized Presentation Attack Detection Regardless almost every proposal comes with its own reduced dataset, there is no agreement upon a PAD benchmark, and generalization properties are not properly evaluated > 現在最直接的做法都推薦直接採用不同dataset去驗證泛化性 ![](https://i.imgur.com/ZUH90Ex.png) - Stage1: Feature Extraction - Stage2: Evaluation > PAI: Presentation Attack Instruments - The Aggregated Dataset ![](https://i.imgur.com/9xIWVoC.png) - Categorization > 對各種 attck/capture devices/lighting/face resolution 去做額外的分類。 ![](https://i.imgur.com/vijIhVI.png) - Protocols(考慮到各種情境) 1. Grandtest (without any filter) 2. Cross-Dataset (直接測試在不同的資料集) 3. One-PAI 4. Unseen Attacks (Cross-PAI) 5. Unseen Capture Devices 6. **Cross-FaceResolution**:高解析度訓練,低解析度測試 7. **Cross-Conditions**:在有利的情況以及不利的情況下去做比較 ![](https://i.imgur.com/uLiEIqV.png) ## 連結 - [Paper](https://arxiv.org/pdf/1904.06213.pdf) - [Github](https://github.com/acostapazo/gradgpad)