--- tags: 生物辨識 --- # Learning Meta Model for Zero- and Few-shot Face Anti-spoofing - 場景的不可預測性 - 新版攻擊無法收集到足夠樣本 ## datasets ![](https://i.imgur.com/PlQ3yAk.png) ## Contributions - zero-shot & few-shot + Face Anti-spoofing 開山始祖 - Adaptive Innerupdate Meta Face Anti-spoofing (AIM-FAS) - propose three novel zero- and few-shot FAS benchmarks ![](https://i.imgur.com/G6uWPwK.png) ## Few-shot and Zero-shot Learning ![](https://i.imgur.com/9PNMBPb.png) ![](https://i.imgur.com/GkvZu99.png) > N:Meta-testing 的過程中用的是多少類樣本 > K:Meta-testing 的過程中每一類有多少個樣本 ## Task generation ### step 1 (training) Sample one fine-grained living category $L_i$ and one spoofing category $S_m$ > predefined categories ### step 2 Sample $M − K$ faces from each of $L_i$ and $S_m$ ### step 3 Resample one fine-grained living category $L_j$ and one spoofing category $S_n$ > new emerged categories ### step 4 Sample $K + Q$ faces from each of $L_j$ and $S_n$ > $K$ 為 support set, $Q$ 為 query set. ### step 5 query set with $2Q$ faces from $L_j$ and $S_n$ support set with the other $2 \times (M − K) + 2 \times K = 2M$ faces > support set 為一個task的traning set,query set為一個task的testing set ![](https://i.imgur.com/RYbXBNg.png) - $K=0$ (zero-shot) - the meta-learner learns from $L_i$ and $S_m$, and predict faces from $L_j$ and $S_n$ - $K>0$ (few-shot) - the meta-learner learns from $L_i$, $L_j$, $S_m$ and $S_n$, and predict faces from $L_j$ and $S_n$ ## AIM-FAS ![](https://i.imgur.com/dkNBY0A.png) ### Inner-update stage (support set) $$ L_{s(\tau_i)}(\theta_i^{(j)})\leftarrow \frac{1}{\|s(\tau_i)\|}\sum_{x,y\in s(\tau_i)}l(f_{\theta_i^{(j)}}(x),y),\\ \theta^{(j+1)}_i \leftarrow \theta^{(j)}_i-\alpha \cdot\gamma^j \cdot \nabla_{\theta^{(j)}_i}L_{s(\tau_i)}(\theta_i^{(j)}) $$ where $\tau_i$ is a randomly selected zero- or few-shot FAS training task, and $\theta^{(j)}_i$ is the meta-learner's weight after $j$ innerupdate steps. > Scalar parameter $\alpha$ and $\gamma$ are the keys to achieve AIU. Both of them are `trainable` ### Optimizing stage (query set) $$ L_{q(\tau_i)}(\theta_i^{(u)})\leftarrow \frac{1}{\|s(\tau_i)\|}\sum_{x,y\in s(\tau_i)}l(f_{\theta_i^{(u)}}(x),y), \\ (\theta, \alpha, \gamma)\leftarrow (\theta, \alpha, \gamma)-\beta \cdot \nabla_{(\theta,\alpha,\gamma)}L_{q(\tau_i)}(\theta_i^{(u)}) $$ ![](https://i.imgur.com/PMNJplD.png) > learn easy fine-tuning weight $\theta$ and propriety $\alpha$ and $\gamma$. ![](https://i.imgur.com/fRCXzAk.png) ## 連結 [GITHUB](https://github.com/qyxqyx/AIM_FAS) [Paper連結](https://arxiv.org/pdf/1904.12490.pdf)