Try   HackMD
tags: linux2022

linux list sort

contributed by < eric88525 >

函式 功能
merge merge two linked list
merge_final 跟 merge 很像,但有特殊設計來讓 merge 在特定情況下加快,最後把忽略的 prev 連接回來
list_sort 主要函式,規劃 merge 流程和回傳結果

核心思想

概念源自於這篇論文 queue merge sort,把 linked list 視為一個 queue。
每次的 merge 對象為 queue 中的最前面二個節點,merge 後放到 tail 並視為一個節點,重複步驟直到全部 merge 完成。

圖片取自論文

而 linux 的實做方式為用二進制來判斷哪時該 merge

count action linked list state
0b000 add 1 [1,1,1,1,1,1]
0b001 add 1 [1,1,1,1,1,1]
0b010 merge,add 1 [1,1,1,1,2]
0b011 add 1 [1,1,1,1,2]
0b100 merge [1,1,2,2]
0b101 pend 已經有兩組 2^k節點,merge [1,1,4]
after do..while merge [2,4]

推演

  • 在推演中以 list = [4,2,1,3,5,6] 來展示

count = 0b0

line 187-194

  • 6 的 next 指向 null






%0

 count = 0b0


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next



4:next->2:data





3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:w





1

1

prev

next



2:next->1:data





1:next->3:data





list

*list



list->4:n





pending

*pending



line 219-229: skip

這段不會執行 因為 count = 0
tail 指向 pending







%0

 count = 0b0


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next



4:next->2:data





3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





1

1

prev

next



2:next->1:data





1:next->3:data





list

*list



list->4:n





pending

*pending



tail

**tail



tail->pending





line: 232-236

  • list->prev = pending,因此4->prev 會指向 null
  • list 往 next 移動
  • pending 接替 list 的前一個位置
  • count++
  • pending->next = null






%0

 count = 0b0


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next




3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





1

1

prev

next



2:next->1:data





1:next->3:data





list

*list



list->2:n





pending

*pending



pending->4:n





tail

**tail



tail->pending





count = 0b1

line 219-229

tail 指向 指向指標(pending)prev,line 222-229不執行







%0

count = 0b1


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next




3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





1

1

prev

next



2:next->1:data





1:next->3:data





list

*list



list->2:n





pending

*pending



pending->4:n





tail

**tail



tail->4:prev





line 232-236

  • 做跟上輪一樣的事情
    • list(2)->prev = pending(4)
    • list 右移動
    • pending 接替位置
    • pending->next = null






%0

count = 0b1


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next




3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





2:prev->4:data





1

1

prev

next




1:next->3:data





list

*list



list->1:n





pending

*pending



pending->2:n





tail

**tail



tail->4:prev





count = 0b10

line 216

  • tail 指回 pending






%0

count = 0b1


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next




3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





2:prev->4:data





1

1

prev

next




1:next->3:data





list

*list



list->1:n





pending

*pending



pending->2:n





tail

**tail



tail->pending





219-220 skip

222-229

  • bits = 0b10 ,進入 if
  • a 指向 *tail , b指向 a->prev (這邊 a 會指向 2 , b 指向 4),傳入 merge()






%0

count = 0b1


head

head

prev

next



4

4

prev

next



head:next->4:data





2

2

prev

next




3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





2:prev->4:data





1

1

prev

next




1:next->3:data





list

*list



list->1:n





pending

*pending



pending->2:n





tail

**tail



tail->pending





a

*a



a->2:data





b

*b



b->4:data





line 225-228

  • a 指向 merge 完成的 2和4節點
  • a->prev = b ->prev , b->prev是 null,因此 a->prev = null
  • *tail (pending) = a






%0

count = 0b1


4

4

prev

next



3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1

1

prev

next



1:next->3:data





list

*list



list->1:data





pending

*pending



pending->2:data





tail

**tail



tail->pending





a

*a



a->2:data





line 232-236

list->prev = pending; pending = list; list = list->next; pending->next = NULL; count++;






%0

count = 0b1


4

4

prev

next



3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1

1

prev

next



1:prev->2:data





list

*list



list->3:data





pending

*pending



pending->1:data





tail

**tail



tail->pending





count = 0b11

line 219-220

  • 執行2次
    • 第一次指向 1->prev
    • 第二次指向 2->prev






%0

 count = 0b11


4

4

prev

next



3

3

prev

next



5

5

prev

next



3:next->5:data





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1

1

prev

next



1:prev->2:data





list

*list



list->3:data





pending

*pending



pending->1:data





tail

**tail



tail->2:prev





line 232-236

list->prev = pending; pending = list; list = list->next; pending->next = NULL; count++;






%0

 count = 0b11


4

4

prev

next



3

3

prev

next



5

5

prev

next




1

1

prev

next



3:prev->1:w





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1:prev->2:data





list

*list



list->5:data





pending

*pending



pending->3:data





tail

**tail



tail->2:prev





count = 0b100







%0

count = 0b100


4

4

prev

next



3

3

prev

next



5

5

prev

next




1

1

prev

next



3:prev->1:w





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1:prev->2:data





list

*list



list->5:data





pending

*pending



pending->3:data





tail

**tail



tail->pending





line 222-229

if (likely(bits)) { struct list_head *a = *tail, *b = a->prev; a = merge(priv, cmp, b, a); /* Install the merged result in place of the inputs */ a->prev = b->prev; *tail = a; }
  • 進入 if
  • a 指向 tail , b = a->prev,執行 merge()






%0

count = 0b100


4

4

prev

next



3

3

prev

next



5

5

prev

next




1

1

prev

next



3:prev->1:w





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1:prev->2:data





list

*list



list->5:data





pending

*pending



pending->3:data





tail

**tail



tail->pending





a

*a



a->3:data





b

*b



b->1:data





  • merge + 修正 prev 後的結果






%0

count = 0b100


4

4

prev

next



3

3

prev

next



5

5

prev

next




6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1

1

prev

next



1:next->3:data





1:prev->2:data





list

*list



list->5:data





pending

*pending



pending->1:data





tail

**tail



tail->pending





a

*a



a->1:data





line 232-236
此時候的狀態為 [2,2,2]







%0

count = 0b100


4

4

prev

next



3

3

prev

next



5

5

prev

next




1

1

prev

next



5:prev->1:n





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1:next->3:data





1:prev->2:data





list

*list



list->6:n





pending

*pending



pending->5:data





tail

**tail



tail->pending





count = 0b101

219-229

  • tail 指向 pending 的 prev
  • a = *tail (1) , b = b->prev (2),進行 merge






%0

count = 0b101


4

4

prev

next



3

3

prev

next



5

5

prev

next




1

1

prev

next



5:prev->1:n





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->4:data





1:next->3:data





1:prev->2:data





list

*list



list->6:n





pending

*pending



pending->5:data





tail

**tail



tail->5:w






a

*a



a->1:data





b

*b



b->2:data





  • merge 後的結果
  • list = [2,4]






%0

count = 0b101


4

4

prev

next



3

3

prev

next



3:next->4:data





5

5

prev

next



1

1

prev

next



5:prev->1:n





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->3:data





1:next->2:data





list

*list



list->6:n





pending

*pending



pending->5:data





tail

**tail



tail->5:prev





a

*a



a->1:data





232-236

執行完成後,跳出 do while 迴圈







%0

count = 0b101


4

4

prev

next



3

3

prev

next



3:next->4:data





5

5

prev

next



1

1

prev

next



5:s->1:w





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->3:data





1:next->2:data





6:prev->5:data





pending

*pending



pending->6:n





tail

**tail



tail->5:prev







  • 第一次的for(;;)
    讓 pending 指回 5,list 指向6進行 merge(pending,list)
    merge後的結果為 list 指向排序好的 5->6






%0

count = 0b101


4

4

prev

next



3

3

prev

next



3:next->4:data





5

5

prev

next



1

1

prev

next



5:s->1:w





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->3:data





1:next->2:data





list

*list



list->5:w





pending

*pending



pending->1:data







  • 第二次的for(;;)
    merge 5->61->2->3->4完成排序






%0

count = 0b101


4

4

prev

next



5

5

prev

next



4:next->5:data





3

3

prev

next



3:next->4:data





6

6

prev

next



5:next->6:data





2

2

prev

next



2:next->3:data





1

1

prev

next



1:next->2:data





list

*list



list->1:w





pending

*pending





把 merge 結果傳入 merge_final() 修正 prev 指標

list = pending; pending = pending->prev; for (;;) { struct list_head *next = pending->prev; if (!next) break; list = merge(priv, cmp, pending, list); pending = next; } /* The final merge, rebuilding prev links */ merge_final(priv, cmp, head, pending, list);

merge_final 會再一次 merge ,並把 prev 給修正

code

// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/string.h> #include <linux/list_sort.h> #include <linux/list.h> /* * Returns a list organized in an intermediate format suited * to chaining of merge() calls: null-terminated, no reserved or * sentinel head node, "prev" links not maintained. */ __attribute__((nonnull(2,3,4))) static struct list_head *merge(void *priv, list_cmp_func_t cmp, struct list_head *a, struct list_head *b) { struct list_head *head, **tail = &head; for (;;) { /* if equal, take 'a' -- important for sort stability */ if (cmp(priv, a, b) <= 0) { *tail = a; tail = &a->next; a = a->next; if (!a) { *tail = b; break; } } else { *tail = b; tail = &b->next; b = b->next; if (!b) { *tail = a; break; } } } return head; } /* * Combine final list merge with restoration of standard doubly-linked * list structure. This approach duplicates code from merge(), but * runs faster than the tidier alternatives of either a separate final * prev-link restoration pass, or maintaining the prev links * throughout. */ __attribute__((nonnull(2,3,4,5))) static void merge_final(void *priv, list_cmp_func_t cmp, struct list_head *head, struct list_head *a, struct list_head *b) { struct list_head *tail = head; u8 count = 0; for (;;) { /* if equal, take 'a' -- important for sort stability */ if (cmp(priv, a, b) <= 0) { tail->next = a; a->prev = tail; tail = a; a = a->next; if (!a) break; } else { tail->next = b; b->prev = tail; tail = b; b = b->next; if (!b) { b = a; break; } } } /* Finish linking remainder of list b on to tail */ tail->next = b; do { /* * If the merge is highly unbalanced (e.g. the input is * already sorted), this loop may run many iterations. * Continue callbacks to the client even though no * element comparison is needed, so the client's cmp() * routine can invoke cond_resched() periodically. */ if (unlikely(!++count)) cmp(priv, b, b); b->prev = tail; tail = b; b = b->next; } while (b); /* And the final links to make a circular doubly-linked list */ tail->next = head; head->prev = tail; } /** * list_sort - sort a list * @priv: private data, opaque to list_sort(), passed to @cmp * @head: the list to sort * @cmp: the elements comparison function * * The comparison function @cmp must return > 0 if @a should sort after * @b ("@a > @b" if you want an ascending sort), and <= 0 if @a should * sort before @b *or* their original order should be preserved. It is * always called with the element that came first in the input in @a, * and list_sort is a stable sort, so it is not necessary to distinguish * the @a < @b and @a == @b cases. * * This is compatible with two styles of @cmp function: * - The traditional style which returns <0 / =0 / >0, or * - Returning a boolean 0/1. * The latter offers a chance to save a few cycles in the comparison * (which is used by e.g. plug_ctx_cmp() in block/blk-mq.c). * * A good way to write a multi-word comparison is:: * * if (a->high != b->high) * return a->high > b->high; * if (a->middle != b->middle) * return a->middle > b->middle; * return a->low > b->low; * * * This mergesort is as eager as possible while always performing at least * 2:1 balanced merges. Given two pending sublists of size 2^k, they are * merged to a size-2^(k+1) list as soon as we have 2^k following elements. * * Thus, it will avoid cache thrashing as long as 3*2^k elements can * fit into the cache. Not quite as good as a fully-eager bottom-up * mergesort, but it does use 0.2*n fewer comparisons, so is faster in * the common case that everything fits into L1. * * * The merging is controlled by "count", the number of elements in the * pending lists. This is beautifully simple code, but rather subtle. * * Each time we increment "count", we set one bit (bit k) and clear * bits k-1 .. 0. Each time this happens (except the very first time * for each bit, when count increments to 2^k), we merge two lists of * size 2^k into one list of size 2^(k+1). * * This merge happens exactly when the count reaches an odd multiple of * 2^k, which is when we have 2^k elements pending in smaller lists, * so it's safe to merge away two lists of size 2^k. * * After this happens twice, we have created two lists of size 2^(k+1), * which will be merged into a list of size 2^(k+2) before we create * a third list of size 2^(k+1), so there are never more than two pending. * * The number of pending lists of size 2^k is determined by the * state of bit k of "count" plus two extra pieces of information: * * - The state of bit k-1 (when k == 0, consider bit -1 always set), and * - Whether the higher-order bits are zero or non-zero (i.e. * is count >= 2^(k+1)). * * There are six states we distinguish. "x" represents some arbitrary * bits, and "y" represents some arbitrary non-zero bits: * 0: 00x: 0 pending of size 2^k; x pending of sizes < 2^k * 1: 01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k * 2: x10x: 0 pending of size 2^k; 2^k + x pending of sizes < 2^k * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k * 4: y00x: 1 pending of size 2^k; 2^k + x pending of sizes < 2^k * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k * (merge and loop back to state 2) * * We gain lists of size 2^k in the 2->3 and 4->5 transitions (because * bit k-1 is set while the more significant bits are non-zero) and * merge them away in the 5->2 transition. Note in particular that just * before the 5->2 transition, all lower-order bits are 11 (state 3), * so there is one list of each smaller size. * * When we reach the end of the input, we merge all the pending * lists, from smallest to largest. If you work through cases 2 to * 5 above, you can see that the number of elements we merge with a list * of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to * 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1). */ __attribute__((nonnull(2,3))) void list_sort(void *priv, struct list_head *head, list_cmp_func_t cmp) { struct list_head *list = head->next, *pending = NULL; size_t count = 0; /* Count of pending */ if (list == head->prev) /* Zero or one elements */ return; /* Convert to a null-terminated singly-linked list. */ head->prev->next = NULL; /* * Data structure invariants: * - All lists are singly linked and null-terminated; prev * pointers are not maintained. * - pending is a prev-linked "list of lists" of sorted * sublists awaiting further merging. * - Each of the sorted sublists is power-of-two in size. * - Sublists are sorted by size and age, smallest & newest at front. * - There are zero to two sublists of each size. * - A pair of pending sublists are merged as soon as the number * of following pending elements equals their size (i.e. * each time count reaches an odd multiple of that size). * That ensures each later final merge will be at worst 2:1. * - Each round consists of: * - Merging the two sublists selected by the highest bit * which flips when count is incremented, and * - Adding an element from the input as a size-1 sublist. */ do { size_t bits; struct list_head **tail = &pending; /* Find the least-significant clear bit in count */ for (bits = count; bits & 1; bits >>= 1) tail = &(*tail)->prev; /* Do the indicated merge */ if (likely(bits)) { struct list_head *a = *tail, *b = a->prev; a = merge(priv, cmp, b, a); /* Install the merged result in place of the inputs */ a->prev = b->prev; *tail = a; } /* Move one element from input list to pending */ list->prev = pending; pending = list; list = list->next; pending->next = NULL; count++; } while (list); /* End of input; merge together all the pending lists. */ list = pending; pending = pending->prev; for (;;) { struct list_head *next = pending->prev; if (!next) break; list = merge(priv, cmp, pending, list); pending = next; } /* The final merge, rebuilding prev links */ merge_final(priv, cmp, head, pending, list); } EXPORT_SYMBOL(list_sort);