# 論文命題過程 [toc] ###### tags: `Thesis` ## 論文題目: - Power-ramping-based UORA for IEEE 802.11be Systems ## 貢獻 1. Develop an analytical model to estimate the performance of the power-ramping-based UORA system 2. Compare the power consumption of each power-ramping method ## 實驗目的 : :::info 本論文提出一個基於power-ramping的UORA在IEEE 802.11be的分析模型, ::: ## 實驗問題定義 :  :::info 1. Low Success Probablity in UORA 2. No model to behave power-ramping in UORA - IEEE 802.11be does not have a special specification for the capture effect ::: ## 挑戰 : 克服問題的困難 :::danger 1. How to prove power-ramping is better than general UORA? 2. How to ensure the analytical model is correct? 3. How to prove the assumption make sense ::: ## 實驗流程 1. 假設輸出圖片 ![](https://i.imgur.com/R7KMp4c.jpg =300x200) ![](https://i.imgur.com/KN1QB0U.jpg =300x200) ![](https://i.imgur.com/2YmcL7T.jpg =300x200) ![](https://i.imgur.com/7ASzXIm.jpg =300x200) ![](https://i.imgur.com/6sStRQo.jpg =300x200) ![](https://i.imgur.com/f8Q7ppt.jpg =300x200) ![](https://i.imgur.com/9SBTiCj.jpg =300x200) ![](https://i.imgur.com/MPVfNKj.jpg =300x200) 2. 證明AP環境可以假設path loss不存在,在真實情況下也不會影響太多 - if Capture ratio=3 -> 95% of STAs fit ![](https://i.imgur.com/gsHywQ5.png) 3. 推導出嘉宏學長 ball in box for power-ramping - original (1 ball = success): $E[S]=m(1-\frac{1}{R})^{m-1}$ - general (n ball = success): - $E[Y] = (^m_n)(\frac{1}{R^n})(1 - \frac{1}{R})^{m-n}$ - $E[S] = R * E[Y]$ - power-ramping ((1 ball) || (2 ball) = success) - $E[s] = E_1[s] + E_2[s]$ - $E[s] = m * (1 - \frac{1}{R})^{m-1} + (\frac{m^2-m}{2R})(1 - \frac{1}{R})^{m-2}$ ![](https://i.imgur.com/hwr1ZHs.png) 4. 推出 UORA anlytical 公式 5. 跑 UORA simulation 去驗證 UORA anlytical 公式 - Consider path loss: - transmit power: $P_T$ - Receive Power: $P_R = \frac{P_T \lambda^2}{(4 \pi d)^2}$