# Ecology of exceptionally large bat colonies – Biotropica BITR-22-202.R1 --- Models and Graphics of the Residue Distribution ## Description of the data and file structure We used presence e absence data from the bat species to analyze, using mvabund package, the relationship with the caves characteristics. The data is organized in a spreadsheet containing in each column the values for the caves features, followed by the data of presence/absence of each species. The file “mvabund” was used as an input in R on the script described below. ## Code/Software Comp<-read.csv2(file="mvabund.csv",sep=";",header=T,dec=",", strip.white = T, na.strings = "") Comp str(Comp) summary(Comp) library(mvabund) Abun_spp <- mvabund(Comp[,23:40]) par(mar=c(2,10,2,2)) boxplot(Comp[,23:40],horizontal = TRUE,las=2, main="Abundance") meanvar.plot(Abun_spp) Abun_spp_pa <- Abun_spp Abun_spp_pa[Abun_spp_pa>0] = 1 Abun_spp_pa cave <- manyglm(Abun_spp ~ Comp$HP*Comp$ESI, family = "binomial", K = 1, x = TRUE, y = TRUE, qr = TRUE, show.coef = TRUE, show.fitted = TRUE, show.residuals = TRUE) cave plot(cave) summary(cave, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") anova(cave) anova(cave, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") cave1 <- manyglm(Abun_spp ~ Comp$Dom*Comp$Hol*Comp$Cre, family = "binomial", K = 1, x = TRUE, y = TRUE, qr = TRUE, show.coef = TRUE, show.fitted = TRUE, show.residuals = TRUE) cave1 plot(cave1) summary(cave1, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") anova(cave1) anova(cave1, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") env <- manyglm(Abun_spp ~ Comp$Tave*Comp$Uave*Comp$Uvar*Comp$Tvar, family = "binomial", K = 1, x = TRUE, y = TRUE, qr = TRUE, show.coef = TRUE, show.fitted = TRUE, show.residuals = TRUE) env plot(env) summary(env, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") anova(env) anova(env, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") env1 <- manyglm(Abun_spp ~ Comp$Tave*Comp$Uave, family = "binomial", K = 1, x = TRUE, y = TRUE, qr = TRUE, show.coef = TRUE, show.fitted = TRUE, show.residuals = TRUE) env1 plot(env1) summary(env1, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") anova(env1) anova(env1, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") env2 <- manyglm(Abun_spp ~ Comp$Uvar*Comp$Tvar, family = "binomial", K = 1, x = TRUE, y = TRUE, qr = TRUE, show.coef = TRUE, show.fitted = TRUE, show.residuals = TRUE) env2 plot(env2) summary(env2, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") anova(env2) anova(env2, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") env3 <- manyglm(Abun_spp ~ Comp$HP * Comp$ESI * Comp$Tave * Comp$Uave, family = "binomial", K = 1, x = TRUE, y = TRUE, qr = TRUE, show.coef = TRUE, show.fitted = TRUE, show.residuals = TRUE) env3 plot(env3) summary(env3, resamp = "montecarlo", test = "LR", p.uni = "unadjusted") anova(env3) anova(env3, resamp = "montecarlo", test = "LR", p.uni = "unadjusted")