# 119_Pascal's_Triangle_II
###### tags: `leetcode`
## Problem Statement
Given an integer rowIndex, return the rowIndexth row of the Pascal's triangle.
- Notice that the row index starts from 0.
In Pascal's triangle, each number is the sum of the two numbers directly above it.
- Follow up:
> Could you optimize your algorithm to use only O(k) extra space?
- Example 1:
> Input: rowIndex = 3
> Output: [1,3,3,1]
- Example 2:
> Input: rowIndex = 0
> Output: [1]
- Example 3:
> Input: rowIndex = 1
> Output: [1,1]
- Constraints:
> 0 <= rowIndex <= 33
## Solution
- Because the result only contains 1 lines, use ```recursive addition``` to...
- add 1 tail element
- add the values inside the array
```cpp=
vector<int> result(1,1);
for (int i= 0; i< rowIndex; i++)
{
result.push_back(1);
for (int j= i; j> 0; j--)
{
result[j]+= result[j- 1];
}
}
```