# 119_Pascal's_Triangle_II ###### tags: `leetcode` ## Problem Statement Given an integer rowIndex, return the rowIndexth row of the Pascal's triangle. - Notice that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. - Follow up: > Could you optimize your algorithm to use only O(k) extra space? - Example 1: > Input: rowIndex = 3 > Output: [1,3,3,1] - Example 2: > Input: rowIndex = 0 > Output: [1] - Example 3: > Input: rowIndex = 1 > Output: [1,1] - Constraints: > 0 <= rowIndex <= 33 ## Solution - Because the result only contains 1 lines, use ```recursive addition``` to... - add 1 tail element - add the values inside the array ```cpp= vector<int> result(1,1); for (int i= 0; i< rowIndex; i++) { result.push_back(1); for (int j= i; j> 0; j--) { result[j]+= result[j- 1]; } } ```