# Markovian Queues in Equilibrium ###### tags: `QT` :::info **Slide** [Markovian Queues in Equilibrium](https://drive.google.com/file/d/1vO8RkpcP6gfAsToURBMtcug2pQaHu1AV/view?usp=sharing) ::: ## 3 - flow out rate = flow in rate: $(\frac{\lambda}{2}+\lambda)p_0=\mu p_1\\(\lambda+\mu)p_1=\lambda p_0+\mu p_2\\\mu p_2=\frac{\lambda}{2}p_0+\lambda p_1\\p_0+p_1+p_2=1$ ## 5 - cosnider $D/D/1$: customer arrives periodicaly, does not have any random properties. e.g. $\tilde t \bar X$, $\tilde x < \tilde t$:at some period of time, there would be no customers in teh system - $\text{for }p_k\text{ : }p_1=\frac{\tilde x}{\tilde t},\ p_0=1-\frac{\tilde x}{\tilde t}$ - $r_k: r_1=0, r_0=1$ ## 6 - $R_k(t)=\lim\limits_{\Delta t\rightarrow 0}P[N(t)=k | A(t,t+\Delta t)] = \lim\limits_{\Delta t\rightarrow 0}\frac{P[N(t)=k,\ A(t,t+\Delta t)]}{P[A(t,t+\Delta t)]}\\=\lim\limits_{\Delta t\rightarrow 0}\frac{P[A(t,t+\Delta t)|N(t)=k]\cdot P[N(t)=k]}{P[A(t,t+\Delta t)]}\\ \because\text{memoryless}\ \therefore =\lim\limits_{\Delta t\rightarrow t}P[N(t)=k]=P(t)$ ## 8 - distribution function: $B(x)=1-e^{-\mu x}$ - mean: inverse relationshoip with average service rate ## 11 - $[H^*(s)]^2$ - $\int xf(x)dx$ - for 2 stage: - factor: $2\mu$: $H^*(x)=\frac{2\mu}{2\mu +s}$ - $B^*(s)=(\frac{2\mu}{2\mu+s})^2$ - $E[x]=\frac{d}{ds}B^*(s)|_{s=0}$ - $E[\tilde{x}]=2E[\tilde{x}]=2\cdot \frac{1}{2\mu}=\frac{1}{\mu}$ ## 12 - $\frac{1}{r\mu}\cdot r=\frac{1}{\mu}$ ## 14 - k customers: $(k-1)r+(r-i+1)=rk-i+1$ ## 15 - relate $p_j$ to $p_k$ - $1^{st}:\ j=(k-1)r+r=kr\\ r^{th}:\ (k-1)r+1\\ p_k=\sum_{j=(k-1)r+1}^{kr}p_j$ ## 16 - adding one customers means adding r stages, r stages to be completed for one person ## 17 - equation: $\begin{cases}\lambda p_0=r\mu p_1\\ (\lambda+r\mu)p_j=\lambda p_{j-1}+r\mu p_{j+1} && j=1,2,...\end{cases}$ - Solving: $P(z)=\sum_{j=0}^\infty p_jz^j$ - summation of the equation 2 to solve it - (note for proof) - use z transform ## 21 - each customers has r stages: consider k customers, total rk stages - kth customer: starts at rk, ends at rk + r - 1 ## 22 - once enters r stage, customers start to be able to leave the stage - $0\to r-1$: no service rate, only enter next stage - $r\to \infty$: service rate appears, let customers leave - $\begin{cases}r\lambda p_0=\mu p_r&&j=0\\r\lambda p_j=r\lambda p_{j-1}+\mu p_{j+r}&&1\leq j\leq r-1\\(r\lambda+\mu)p_j=r\lambda p_j+\mu p_{j+r} && j \geq r\end{cases}$ - z-transform: [note](https://drive.google.com/file/d/1BIXB-97_Ej3j3sB-NYYveaxyRaHAPVRX/view?usp=share_link) ## 23 - The previous problem is not common - use the previous result to solve popular problem - for one customer to arrive, there are total r customers to be completed (has not finished r stages facilities): go to r - each small r customers only need single stage ## 24 - Not realistic: general case - sometimes multiple customers - all the probability of gi = 1 - (no zero customer to arrive) ## 25 $\begin{cases} \lambda p_0=\mu p_1(p_0=\sum_{i=1}^\infty g_i)\\ (\lambda+\mu)p_k=\mu p_{k+1}+\sum_{i=0}^{k-1}p_i\cdot\lambda g_{k-i} & k\geq 1 \end{cases}$ - $G(z) = \sum_{i=0}^{\infty}g_kz^k$ - z transform: [note]() ## 26 ![](https://i.imgur.com/zv1jZ25.png) - $\begin{cases}\lambda p_0=\mu p_1 & k=0 \\ (\lambda+\mu)p_1=\frac{\lambda}{2}p_0+\mu p_2 & k=1\\ (\lambda+\mu)p_k=\frac{\lambda}{2}p_{k-1}+\frac{\lambda}{2}p_{k-2}+\mu p_{k+1} & k\ge 2\end{cases}$ [note]() ## 27 - state: number of customers - each customer needs to finish r stages ## 28 ![](https://i.imgur.com/f5FHNWj.png) - $\begin{cases}\lambda p_0=\mu(p_01+p_2+......) & k=0\\(\lambda+\mu)p_k=\mu p_{k+r}+\lambda p_{k-1} & k \ge 1\end{cases}$ [note]() ## 29 ![](https://i.imgur.com/SMkNnfc.png) - boundary case: $k=0: \lambda p_0=\mu p_1 + \mu p_2$ - other states: $k \ge 1 (\lambda p + \mu)p_k = \lambda p_{k-1} + \mu p_{k+2}$ - result: $P(z)=\frac{\mu p_0 p_0(z+1)+\mu p_1 z}{\mu(z+1)-\lambda z^2}$ - $P(1) = 1$ - $P_1 = 2(1-p_0)-\frac{\lambda}{\mu}$ - $P(z) = \frac{(2\mu-\lambda)z+\mu}{\mu(z+1)-\lambda z^2}$