--- tags: Mundo Mejor, 3ro de Secundaria, 2020 --- <style> .markdown-body .mark, .markdown-body mark{ background: red; border-radius: 8px; color: white; font-weight: bold; padding: 5px 10px; } h2 { color: brown; } </style> # Productos notables ## Ejercicio 1  ==Solución== Usando binomio al cuadrado: $\boxed{(a+b)^2 = a^2 + 2ab + b^2}$ Reemplazando: $$ %%%%%%%%%% Definimos lo necesario %%%%%%%%%% %definiendo lo necesario \require{cancel} \require{color} \newcommand\ccancel[2][red]{ {\color{#1} \cancel{ \color{black} #2 } } } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{align*} \left ( \sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}} \right )^2 &= \left( \sqrt{2+\sqrt{3}} \right)^2 + 2{\left(\sqrt{2+\sqrt{3}}\right) \left(\sqrt{2-\sqrt{3}} \right)} + \left( \sqrt{2-\sqrt{3}} \right)^2 \\[10pt] &= 2+\sqrt{3} + 2\underbrace{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}_{diferencia\ de\ cuadrados} + 2 - \sqrt{3} \\[10pt] &= 2+\ccancel{\sqrt{3}} + 2\sqrt{2^2 - \sqrt{3}^2} + 2 - \ccancel{\sqrt{3}} \\[10pt] &= 4 + 2\sqrt{4-3}\\[10pt] &= 4 + 2 \\[10pt] &= 6 \end{align*} $$ ==Rpta: a== ## Ejercicio 2  ==Solución== Aplicando binomio al cuadrado: $$ \begin{align*} &= \left[(3x)^2 + 2(3x)(5) + 5^2 \right] - \left[(2x)^2 - 2(2x)(3) + 3^2 \right] - \left( 5x^2 + 42x + 15 \right) \\[10pt] &= 9x^2 + 30x + 25 - \left[ 4x^2-12x+9 \right] - \left( 5x^2 + 42x + 15 \right) \\[10pt] &= \ccancel{9x^2} + \ccancel[green]{30x} + 25 - \ccancel{4x^2} + \ccancel[green]{12x} - 9 - \ccancel{5x^2} - \ccancel[green]{42x} - 15 \\[10pt] &= 25 - 24 \\[10pt] &= 1 \end{align*} $$ ==Rpta: a== ## Ejercicio 3  ==Solución== Aplicando binomio al cuadrado: $$ \begin{align*} &= \dfrac{ \left[ x^2 + 2(x)(2y) + (2y)^2 {\ \Large +\ } (2x)^2 -2(2x)(y) + y^2 -5y^2 \right] }{5} \\[10pt] &= \dfrac{ x^2 + \ccancel[blue]{4xy} + \ccancel{4y^2} {\ \Large +\ } 4x^2 - \ccancel[blue]{4xy} + \ccancel{y^2} - \ccancel{5y^2} }{5} \\[10pt] &= \dfrac{\ccancel[green]{5}x^2}{\ccancel[green]{5}} \\[10pt] &= x^2 \end{align*} $$ ==Rpta: c== ## Ejercicio 4  ==Solución== Elevamos al cuadrado el dato: $$ \begin{align*} \left( x + \frac 1x \right)^2 &= (4)^2 \\[10pt] x^2 + 2 \cdot \ccancel{x} \cdot \frac{1}{\ccancel{x}} + \left( \frac 1x \right)^2 &= 16\\[10pt] x^2 + 2 + \frac {1}{x^2} &= 16 \\[10pt] x^2 + \frac {1}{x^2} &= 14 \end{align*} $$ ==Rpta: c== ## Ejercicio 5  ==Solución== Elevamos al cuadrado el dato: $$ \begin{align*} \left( x + \frac 1x \right)^2 &= (5)^2 \\[10pt] x^2 + 2 \cdot \ccancel{x} \cdot \frac{1}{\ccancel{x}} + \left( \frac 1x \right)^2 &= 25\\[10pt] x^2 + 2 + \frac {1}{x^2} &= 25 \\[10pt] x^2 + \frac {1}{x^2} &= 23 \end{align*}\\ $$ Elevamos nuevamente al cuadrado: $$ \begin{align*} \left(x^2 + \frac {1}{x^2}\right)^2 &= (23)^2 \\[10pt] x^4 + 2 \cdot \ccancel{x^2} \cdot \frac{1}{\ccancel{x^2}} + \left( \frac{1}{x^2} \right)^2 &= 529\\[10pt] x^4 + 2 + \frac {1}{x^4} &= 529 \\[10pt] x^4 + \frac {1}{x^4} &= 527 \end{align*} $$ ==Rpta: d== ## Ejercicio 6  ==Solución== Usamos Legendre: $\boxed{(a+b)^2-(a-b)^2=4ab}$ Entonces: $$ \begin{align*} 2x^2+2y^2 &= \underbrace{(x+y)^2-(x-y)^2} \\[10pt] 2x^2+2y^2 &= 4xy \end{align*} $$ Simplificando toda la expresión: $$ \ccancel{2}x^2+\ccancel{2}y^2 = \ccancel{4}xy $$ Ordenando términos: $$ \begin{align*} x^2+y^2 &= 2xy \\[10pt] \underbrace{x^2 -2xy +y^2}_{trinomio\ cuadrado\ perfecto} &= 0 \\[10pt] (x-y)^2 &= 0 \\[10pt] x - y &= 0 \implies \boxed{x = y} \end{align*} $$ Reemplazando en lo pedido: $$ \begin{align*} \left( \frac xy \right)^{10} &= \left( \frac xx \right)^{10} \\[10pt] &= (1)^{10} = 1 \end{align*} $$ ==Rpta: b== ## Ejercicio 7  ==Solución== Dando forma a la expresión: $$ \large =\sqrt[32]{{\color{blue}(2^4-1)}(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)+1} $$ Aplicamos diferencia de cuadrados: $\boxed{(a+b)(a-b)=a^2-b^2}$ $$ \large \begin{align*} &=\sqrt[32]{\underbrace{(2^4-1)(2^4+1)}(2^8+1)(2^{16}+1)(2^{32}+1)+1} \\[10pt] &=\sqrt[32]{\underbrace{(2^8-1)(2^8+1)}(2^{16}+1)(2^{32}+1)+1}\\[10pt] &=\sqrt[32]{\underbrace{(2^{16}-1)(2^{16}+1)}(2^{32}+1)+1}\\[10pt] &=\sqrt[32]{\underbrace{(2^{32}-1)(2^{32}+1)}+1}\\[10pt] &=\sqrt[32]{2^{64}-\ccancel{1}+\ccancel{1}}\\[10pt] &=\sqrt[\ccancel{32}]{2^{\ccancel{64}}}\\[10pt] &=2^2=4 \end{align*} $$ ==Rpta: d== ## Ejercicio 8  ==Solución== Dando forma a la expresión: $$ \begin{align*} Q &= ({\color{blue} 5^2 - 3^2})(5^2+3^2)(5^4+3^4)(5^8+3^8)(5^{16}+3^{16})+3^{32} \end{align*}\\ $$ Aplicamos diferencia de cuadrados: $\boxed{(a+b)(a-b)=a^2-b^2}$ $$ \begin{align*} Q &= \underbrace{(5^2 - 3^2)(5^2+3^2)}(5^4+3^4)(5^8+3^8)(5^{16}+3^{16})+3^{32} \\[10pt] &= \underbrace{(5^4-3^4)(5^4+3^4)}(5^8+3^8)(5^{16}+3^{16})+3^{32} \\[10pt] &= \underbrace{(5^8-3^8)(5^8+3^8)}(5^{16}+3^{16})+3^{32} \\[10pt] &= \underbrace{(5^{16}-3^{16})(5^{16}+3^{16})}+3^{32} \\[10pt] &= 5^{32}-\ccancel{3^{32}} + \ccancel{3^{32}} \\[10pt] &= 5^{32} \\[10pt] \end{align*}\\ $$ ==Rpta: c== ## Ejercicio 9  ==Solución== Elevamos al cuadrado el dato: $$ \begin{align*} \left( x + \frac 1x \right)^2 &= (3)^2 \\[10pt] x^2 + 2 \cdot \ccancel{x} \cdot \frac{1}{\ccancel{x}} + \left( \frac 1x \right)^2 &= 9\\[10pt] x^2 + 2 + \frac {1}{x^2} &= 9 \\[10pt] x^2 + \frac {1}{x^2} &= 7 \end{align*} $$ Elevamos al cubo: $$ \begin{align*} \left( x^2 + \frac{1}{x^2} \right)^3 &= (7)^3 \\[10pt] (x^2)^3+\left(\frac{1}{x^2}\right)^3+3\left(\ccancel{x^2}\right)\left(\frac{1}{\ccancel{x^2}}\right)\left(\underbrace{x^2+\frac{1}{x^2}}_7\right) &= 343 \\[10pt] x^6+\frac{1}{x^6}+3(1)(7) &= 343 \\[10pt] x^6+\frac{1}{x^6} &= 343-21 \\[10pt] x^6+\frac{1}{x^6} &= 322 \\[10pt] \end{align*} $$ ==Rpta: d== ## Ejercicio 10  ==Solución== Aplicamos diferencia de cuadrados: $\boxed{(a+b)(a-b)=a^2-b^2}$ $$ \begin{align*} E &= (987654322+987654320)(987654322-987654320) \\[10pt] E &= (1975308642)(2) \\[10pt] E &= 3950617284 \end{align*} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up