--- tags: Innova, 2do Secundaria, 2020 --- {%hackmd uDPEliYESW6lSHPBuyJ46A %} # Innova 2S ![](https://i.imgur.com/qFEgndd.png) <span class="caja">Solución</span> $$ \begin{align*} &= \sqrt{\frac{5}{7} \times \frac{343}{125}} \\ &= \sqrt{\frac{5 \times 7^3}{7 \times 5^3} } \\ &= \sqrt{\frac{7^2}{5^2} } \\ &= \sqrt{\left ( \frac{7}{5} \right)^2} \\ &= \frac{7}{5} \end{align*} $$ ![](https://i.imgur.com/uDpd66R.png) <span class="caja">Solución</span> $$ \begin{align*} &= \sqrt{16 \cdot 3} - 2\sqrt{4 \cdot 3} \\ &= 4\sqrt{3} - 2\cdot 2 \sqrt{3} \\ &= 4\sqrt{3} - 4 \sqrt{3} \\ &= 0 \end{align*} $$ ![](https://i.imgur.com/jAviywC.png) <span class="caja">Solución</span> $$ \begin{align*} &= \sqrt{9 \cdot 5} - 3\sqrt{25 \cdot 5} \\ &= 3\sqrt{5} - 3\cdot 5 \sqrt{5} \\ &= 3\sqrt{5} - 15 \sqrt{5} \\ &= -12\sqrt{5} \end{align*} $$ ![](https://i.imgur.com/QPDdwuF.png) <span class="caja">Solución</span> $$ \begin{align*} &= \dfrac{a ^{\dfrac{5}{3}}}{ a^{\dfrac{1}{2}} } \\[10pt] &= a ^{\dfrac{5}{3} - \dfrac{1}{2}} \\[10pt] &= a ^{\dfrac{10-3}{6}} \\[10pt] &= a ^{\dfrac{7}{6}} \\[10pt] \end{align*} $$ ![](https://i.imgur.com/gjtWjF7.png) <span class="caja">Solución</span> $$ \begin{align*} &= a ^{\dfrac{1}{3}} \cdot a^{\dfrac{7}{2}} \\[10pt] &= a ^{\dfrac{1}{3} + \dfrac{7}{2}} \\[10pt] &= a ^{\dfrac{2+21}{6}} \\[10pt] &= a ^{\dfrac{23}{6}} \\[10pt] \end{align*} $$ ![](https://i.imgur.com/u4eOkbY.png) <span class="caja">Solución</span> $$ \begin{align*} M &= \frac{ \sqrt[5]{(5^2)^3} \cdot \sqrt[15]{5} \cdot \sqrt[3]{5^2} }{\sqrt[6]{5^2} \cdot \sqrt[5]{5^3}} \\[10pt] M &= \frac{ 5^{\frac{6}{5}} \cdot 5^{1 \over 15} \cdot 5^{2 \over 3} }{ 5^{2 \over 6} \cdot 5^{3 \over 5} } \\[10pt] M &= \frac{ 5^{ \frac{6}{5} + \frac{1}{15} + \frac{2}{3} } }{5 ^{\frac{1}{3} + \frac{3}{5}} } \\[10pt] M &= \frac{ 5^{\frac{18 + 1 + 10}{15}} }{5^{\frac{5 + 9}{15}}} \\[10pt] M &= \frac{ 5^{\frac{29}{15}} }{5^{\frac{14}{15}}} \\[10pt] M &= 5^{\frac{29}{15} - \frac{14}{15}} \\[10pt] M &= 5^{\frac{15}{15}} = 5^1 = 5 \\[10pt] \end{align*} $$ --- ![](https://i.imgur.com/HUWZG3B.png) ![](https://i.imgur.com/yxyGJdK.png) ![](https://i.imgur.com/8R70sDS.png) <span class="caja">Solución</span> Perímetro: $2[3n^2 + (5n+5)]$ Reduciendo: $6n^2 + 10n + 10$ ![](https://i.imgur.com/ziyvUqx.png) <span class="caja">Solución</span> **Primera pregunta:** Borde interno: $2[(x-2) + (x-9)]$ $\qquad \qquad \qquad = 2[2x -11]$ $\qquad \qquad \qquad = 4x -22$ Borde externo: $2[(2x+5) + 2x]$ $\qquad \qquad \qquad = 2[4x + 5]$ $\qquad \qquad \qquad = 8x + 10$ Total del borde del jardín: $4x - 22 + 8x + 10$ $\qquad \qquad \qquad \qquad \qquad = 12x - 12$ **Segunda pregunta:** Si $x=4$ entonces comprará: $12 \times 4 - 12$ $\qquad \qquad \qquad \qquad \qquad \quad = 48 - 12$ $\qquad \qquad \qquad \qquad \qquad \quad = 36$ --- ![](https://i.imgur.com/4TiYidw.png) ![](https://i.imgur.com/ZJgruhg.png) ![](https://i.imgur.com/UnJeceq.png) ![](https://i.imgur.com/7d9Q0Qa.png) <span class="caja">Solución</span> $= 20 \times 4 - 10$ $= 80 - 10$ $= 70$ ![](https://i.imgur.com/gzewmMv.png) <span class="caja">Solución</span> $= \dfrac{(3)^2}{11 + 3}$ $= \dfrac{9}{14}$