# 數位邏輯導論 ## 二進位 ## 101101 ={(2^5)*1} +{(2^4)*0} +{(2^3)*1} +{(2^2)*1} +{(2^1)*0} +{(2^0)*1} ### EX: 123 (十進位轉二進位) ### > 123/2=61...1 ### > 61/2=30...1 ### > 30/2=15...0 ### > 15/2=7...1 ### > 7/2=3...1 ### > 3/2=1...1 ### > 1/2=0...1 ###### tags: +U+U+U+U+U+U+U+U+U+U+U+U+U+U+U 好>< ## 有符號數處理 ###### tags: 以4個bit來表示,一個bit有0,1兩種可能,所以總共有2^4種表示法。 ### >> Sign-magnitude(原碼) * 硬體的實現較困難 * 最高有效位數為0表示正數,1表示負數! | +0 | +1 | +2| +3| +4| +5| +6| +7| +8| | ---- | ---- | --- | --- | --- | --- | --- | --- | ---- | | 0000 | 0001 | 0010| 0011|0100 | 0101| 0110|0111| /| |-0|-1|-2|-3|-4|-5|-6|-7| -8| | -------- | -------- | --- | --- | --- | --- | --- | --- | -------- | |1000|1001 | 1010 | 1011 | 1100 |1101 | 1110 | 1111 | / | ### >> 1's complement(1補數) * 改善 Sign-magnitude(原碼) 正負相似,容易出錯的問題 * 負數為正數的補數(0,1互補) | -0 | -1 | -2| -3 | -4 |-5 | -6 | -7 | -8 | | -------- | -------- | -------- | --- | --- | --- | --- | --- | --- | | 1111 |1110 | 1101 | 1100 |1011 |1010 |1001 |1000 | / | ### >>2's complement(2補數) * 解決+0及-0的問題 * 兩正整數相加需小於2^3,否則會造成溢質(overflow)的錯誤 ###### tags: n=4(bit) 總和小於2^(n-1) * 將一補數的負數數字+1,使負數從-1開始 | -0 | -1| -2 | -3 | -4 | -5 | -6 | -7 |-8 | | -------- | -------- | -------- | --- | --- | --- | --- | --- | --- | | / | 1111 | 1110 | 1101| 1100 |1011 | 1010 |1001 |1000 | ## Boolean algebra(布林運算) ![](https://i.imgur.com/n1s63p5.png) (Z=X•Y) > #### 0•0=0 , 0•1=0 , 1•0=0 , 1•1=1 ![](https://i.imgur.com/4mXFc0v.png) > #### 0+0=0 , 0+1=1 , 1+0=1 , 1+1=1 ![](https://i.imgur.com/gl70wRQ.png) > #### A=1 A'=0 , A=0 A'=1 ### EX. ![](https://i.imgur.com/nSTzexo.png) ![](https://i.imgur.com/sKvk9r0.png) --- ### >> 交換律( Commutative Law ) ![](https://i.imgur.com/Nbw3aJH.png) ### >> 結合律( Associative Law ) ![](https://i.imgur.com/7kfihoR.png) ### >> 分配律( Distributive Law ) ### X(Y+Z)= XY+XZ , X+YZ= (X+Y) • (X+Z) --- ## 2-level logical realization 二層邏輯的實現方式 #### Sum of product form(SOP) & Product of sum(POS) ![](https://i.imgur.com/0acq5BM.png) ###### tags: 右邊用分配律變成左邊, SOP ➝ POS ![](https://i.imgur.com/gIO3a7u.png) --- # Demorgan's Law (笛摩根定律) ![](https://i.imgur.com/IjJPeYB.png) ![](https://i.imgur.com/xYS6gQB.png) ![](https://i.imgur.com/bGxRaRl.png) ![](https://i.imgur.com/ytZ9Cgd.png) EX ![](https://i.imgur.com/RzdElM9.png) ## General Form ### >> One-step rule #### 不用一層一層做,and 跟 or 互換,補數跟沒補數互換,0,1互換 ![](https://i.imgur.com/k081ycF.png) ###### tags: 要注意順序,先做的交換之後也是要先做 #### EX ![](https://i.imgur.com/SlFlXhs.png) ### >> Duality (對偶性) #### and 跟 or互換,1,0互換 ,補數不用 ![](https://i.imgur.com/Ns4p2cu.png) #### EX ![](https://i.imgur.com/sIrQtIT.png) ### 對偶的特性 ![](https://i.imgur.com/nZof4Eg.png) #### EX ![](https://i.imgur.com/fGVvyy6.png) --- ## 乘法跟因式表達方式 1. ### x(y+z) = xy+xz ###### tags: pos ➝ sop 2. ### x+yz = (x+y)(x+z) ###### tags: sop ➝ pos 3. ### (x+y)(x'+z) = xz+yx' ###### tags: pos ➝ sop ###### 證明 1. : 分配律➝ xx'+ xz + x'y + yz ###### ➝ 0+ xz + x'y + (x+x')yz ###### ➝ 0+ xz + x'y + xyz + x'yz ###### ➝ xz 比 xyz 大,則可捨棄xyz, x'yz也是 ###### ➝ 得 xz + yx' ###### 證明 2. : 假設 x=1,x=0時,左邊都會等於右邊,得兩式子相等 ### EX ![](https://i.imgur.com/u03QRJz.png) ###### tags: POS變SOP ### EX ![](https://i.imgur.com/0GnkYri.png) ###### tags: SOP變POS --- ## Exclusive-or!(x-or)[](https://i.imgur.com/XGUjUrj.png) #### 有排他性 ![](https://i.imgur.com/0dQvZMU.png) 證!!!!!! ![](https://i.imgur.com/UwZzkJc.png) ## Equivalence Operation(xNor) ![](https://i.imgur.com/QKPUm80.png)