# ÜB 09 Algo unten←0;oben←n−1; while oben > unten do next ← ⌊ (x−A[unten])/(A[oben]−A[unten]) ⋅ (oben − unten)⌋ + unten; if x = A[next] then return next ; else n ← oben − unten + 1; if x < A[next] then Finde i, so dassA [next−(i+1)⋅ √n+1]≤x≤A[next−i⋅ √n]; oben ← next − i ⋅ √n; unten←max{unten,next−(i+1)⋅ √n+1}; else Finde i, so dassA[next+i⋅ √n]≤x≤A[next+(i+1)⋅ n−1]; oben ← min{oben, next + (i + 1) ⋅ √n − 1}; unten ← next + i ⋅ √n; end end end if oben = unten ∧ x = A[oben] then return oben; end return false ; Schritt 0:\\ $E_T=\{ \}, $\\ R(1) = A \\ R(2) = B \\ R(3) = C \\ R(4) = D \\ R(5) = E \\ R(6) = F \\ R(7) = G \\ R(8) = H \\ R(9) = I \\ Elem(A)=\{ 1 \}, \\ Elem(B)=\{ 2 \}, \\ Elem(C)=\{ 3 \}, \\ Elem(D)=\{ 4 \}, \\ Elem(E)=\{ 5 \}, \\ Elem(F)=\{ 6 \}, \\ Elem(G)=\{ 7 \}, \\ Elem(H)=\{ 8 \}, \\ Elem(I)=\{ 9 \}\\ Schritt 1: \\ $E_T=\{ (1,2) \}, $\\ R(1) = B \\ R(2) = B \\ R(3) = C \\ R(4) = D \\ R(5) = E \\ R(6) = F \\ R(7) = G \\ R(8) = H \\ R(9) = I \\ Elem(B)=\{ 1, 2 \}, \\ Elem(C)=\{ 3 \}, \\ Elem(D)=\{ 4 \}, \\ Elem(E)=\{ 5 \}, \\ Elem(F)=\{ 6 \}, \\ Elem(G)=\{ 7 \}, \\ Elem(H)=\{ 8 \}, \\ Elem(I)=\{ 9 \}\\ Schritt 2: \\ $E_T=\{ (1,2), (6,8) \}, $\\ R(1) = B \\ R(2) = B \\ R(3) = C \\ R(4) = D \\ R(5) = E \\ R(6) = H \\ R(7) = G \\ R(8) = H \\ R(9) = I \\ Elem(B)=\{ 1, 2 \}, \\ Elem(C)=\{ 3 \}, \\ Elem(D)=\{ 4 \}, \\ Elem(E)=\{ 5 \}, \\ Elem(G)=\{ 7 \}, \\ Elem(H)=\{ 8, 6 \}, \\ Elem(I)=\{ 9 \}\\ Schritt 3: \\ $E_T=\{ (1,2), (6,8), (4,7) \}, $\\ R(1) = B \\ R(2) = B \\ R(3) = C \\ R(4) = G \\ R(5) = E \\ R(6) = H \\ R(7) = G \\ R(8) = H \\ R(9) = I \\ Elem(B)=\{ 1, 2 \}, \\ Elem(C)=\{ 3 \}, \\ Elem(E)=\{ 5 \}, \\ Elem(G)=\{ 7, 4 \}, \\ Elem(H)=\{ 8, 6 \}, \\ Elem(I)=\{ 9 \}\\ Schritt 4: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9)\}, $\\ R(1) = B \\ R(2) = B \\ R(3) = C \\ R(4) = G \\ R(5) = E \\ R(6) = I \\ R(7) = G \\ R(8) = I \\ R(9) = I \\ Elem(B)=\{ 1, 2 \}, \\ Elem(C)=\{ 3 \}, \\ Elem(E)=\{ 5 \}, \\ Elem(G)=\{ 7, 4 \}, \\ Elem(I)=\{ 9, 8, 6 \}\\ Schritt 5: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4)\} $\\ R(1) = G \\ R(2) = G \\ R(3) = C \\ R(4) = G \\ R(5) = E \\ R(6) = I \\ R(7) = G \\ R(8) = I \\ R(9) = I \\ Elem(C)=\{ 3 \}, \\ Elem(E)=\{ 5 \}, \\ Elem(G)=\{ 7, 4, 1, 2 \}, \\ Elem(I)=\{ 9, 8, 6 \}\\ Schritt 6: \\ (8,9): R(8) = R(9) Schritt 7: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4), (3,6)\} $\\ R(1) = G \\ R(2) = G \\ R(3) = I \\ R(4) = G \\ R(5) = E \\ R(6) = I \\ R(7) = G \\ R(8) = I \\ R(9) = I \\ Elem(E)=\{ 5 \}, \\ Elem(G)=\{ 7, 4, 1, 2 \}, \\ Elem(I)=\{ 9, 8, 6, 3 \}\\ Schritt 8: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4), (3,6), (7,8) \} $\\ R(1) = I \\ R(2) = I \\ R(3) = I \\ R(4) = I \\ R(5) = E \\ R(6) = I \\ R(7) = I \\ R(8) = I \\ R(9) = I \\ Elem(E)=\{ 5 \}, \\ Elem(I)=\{ 9, 8, 6, 3, 7, 4, 1, 2 \}\\ Schritt 9: \\ (2,3): R(2) = R(3) Schritt 10: \\ (2,6): R(2) = R(6) Schritt 11: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4), (3,6), (7,8), (2, 5) \} $\\ R(1) = I \\ R(2) = I \\ R(3) = I \\ R(4) = I \\ R(5) = I \\ R(6) = I \\ R(7) = I \\ R(8) = I \\ R(9) = I \\ Elem(I)=\{ 9, 8, 6, 3, 7, 4, 1, 2, 5 \}\\ Schritt 12: \\ (5, 8): R(5) = R (8) Schritt 13: \\ (1, 5): R(1) = R (5) Schritt 14: \\ (5,7): R(5) = R (7) Schritt 15: \\ (2, 5): R(2) = R (5) Schritt 16: \\ (5, 6): R(5) = R (6) ------- \begin{table}[] \begin{tabular}{llll} Schritt 0: & Schritt 1: & Schritt 2: & Schritt 3: \\ $E_T=\{ \}, $ & $E_T=\{ (1,2) \}, $ & $E_T=\{ (1,2), (6,8) \}, $ & $E_T=\{ (1,2), (6,8), (4,7) \}, $ \\ R(1) = A & R(1) = B & R(1) = B & R(1) = B \\ R(2) = B & R(2) = B & R(2) = B & R(2) = B \\ R(3) = C & R(3) = C & R(3) = C & R(3) = C \\ R(4) = D & R(4) = D & R(4) = D & R(4) = G \\ R(5) = E & R(5) = E & R(5) = E & R(5) = E \\ R(6) = F & R(6) = F & R(6) = H & R(6) = H \\ R(7) = G & R(7) = G & R(7) = G & R(7) = G \\ R(8) = H & R(8) = H & R(8) = H & R(8) = H \\ R(9) = I & R(9) = I & R(9) = I & R(9) = I \\ Elem(A)=\{ 1 \}, & Elem(B)=\{ 1, 2 \}, & Elem(B)=\{ 1, 2 \}, & Elem(B)=\{ 1, 2 \}, \\ Elem(B)=\{ 2 \}, & Elem(C)=\{ 3 \}, & Elem(C)=\{ 3 \}, & Elem(C)=\{ 3 \}, \\ Elem(C)=\{ 3 \}, & Elem(D)=\{ 4 \}, & Elem(D)=\{ 4 \}, & Elem(E)=\{ 5 \}, \\ Elem(D)=\{ 4 \}, & Elem(E)=\{ 5 \}, & Elem(E)=\{ 5 \}, & Elem(G)=\{ 7, 4 \}, \\ Elem(E)=\{ 5 \}, & Elem(F)=\{ 6 \}, & Elem(G)=\{ 7 \}, & Elem(H)=\{ 8, 6 \}, \\ Elem(F)=\{ 6 \}, & Elem(G)=\{ 7 \}, & Elem(H)=\{ 8, 6 \}, & Elem(I)=\{ 9 \} \\ Elem(G)=\{ 7 \}, & Elem(H)=\{ 8 \}, & Elem(I)=\{ 9 \} & \\ Elem(H)=\{ 8 \}, & Elem(I)=\{ 9 \} & & \\ Elem(I)=\{ 9 \} & & & \end{tabular} \end{table} \begin{table}[] \begin{tabular}{lll} Schritt 4: & Schritt 5: & Schritt 6: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9)\}, $ & $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4)\} $ & (8,9): R(8) = R(9) \\ R(1) = B & R(1) = G & \\ R(2) = B & R(2) = G & \\ R(3) = C & R(3) = C & \\ R(4) = G & R(4) = G & \\ R(5) = E & R(5) = E & \\ R(6) = I & R(6) = I & \\ R(7) = G & R(7) = G & \\ R(8) = I & R(8) = I & \\ R(9) = I & R(9) = I & \\ Elem(B)=\{ 1, 2 \}, & Elem(C)=\{ 3 \}, & \\ Elem(C)=\{ 3 \}, & Elem(E)=\{ 5 \}, & \\ Elem(E)=\{ 5 \}, & Elem(G)=\{ 7, 4, 1, 2 \}, & \\ Elem(G)=\{ 7, 4 \}, & Elem(I)=\{ 9, 8, 6 \} & \\ Elem(I)=\{ 9, 8, 6 \} & & \end{tabular} \end{table} \begin{table}[] \begin{tabular}{ll} Schritt 8: & Schritt 9: \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4), (3,6), (7,8) \} $ & (2,3): R(2) = R(3) \\ R(1) = I & Schritt 10: \\ R(2) = I & (2,6): R(2) = R(6)\\ R(3) = I & \\ R(4) = I & \\ R(5) = E & \\ R(6) = I & \\ R(7) = I & \\ R(8) = I & \\ R(9) = I & \\ Elem(E)=\{ 5 \}, & \\ Elem(I)=\{ 9, 8, 6, 3, 7, 4, 1, 2 \} & \end{tabular} \end{table} \begin{table}[] \begin{tabular}{lll} Schritt 11: & Schritt 12: & \\ $E_T=\{ (1,2), (6,8), (4,7), (6,9), (1,4), (3,6), (7,8), (2, 5) \} $ & (5, 8): R(5) = R (8) & \\ R(1) = I & Schritt 13: & \\ R(2) = I & (1, 5): R(1) = R (5) & \\ R(3) = I & Schritt 14: & \\ R(4) = I & (5,7): R(5) = R (7) & \\ R(5) = I & Schritt 15: & \\ R(6) = I & (2, 5): R(2) = R (5) & \\ R(7) = I & Schritt 16: & \\ R(8) = I & (5, 6): R(5) = R (6) & \\ R(9) = I & & \\ Elem(I)=\{ 9, 8, 6, 3, 7, 4, 1, 2, 5 \} & & \end{tabular} \end{table}