Try   HackMD

2022q1 Homework3 (quiz3)

contributed by < Duodenum >

作業要求

2022q1 第 3 週測驗題

測驗 1

在 Linux 核心原始程式碼,include/linux/bitfield.h 提及一個巨集 GENMASK,其作用是依據給定的範圍,產生連續的 bitmask

#define GENMASK(h, l) \
    (((~0UL) >> (LEFT)) & ((~0UL) >> (l) << (RIGHT)))

輸入為 h, l 合理推斷為兩段 bitset 最後 & 出所求,兩段分別為 h 到 LSB 以及 l 到 MSB 。 例如: 000111112 & 111100002 = 000100002
因為 UL 為 64 bits , (~0UL) 需要右移 64 - 1 - h bits ,LEFT = 63 - h
而後者先右移 l 後再左移 l 後即可將後 l bits 設為 0RIGHT = l

測驗 2

struct foo;
  
struct fd {
    struct foo *foo;
    unsigned int flags;
};

enum {
    FOO_DEFAULT = 0,
    FOO_ACTION,                           
    FOO_UNLOCK,
} FOO_FLAGS;

static inline struct fd to_fd(unsigned long v)
{
    return (struct fd){EXP1, v & 3};
}

由上方 fd 結構體可知 EXP1 前綴應為 (struct foo *) 指向 foo 的指標
因題目要求做 4 byte alignment ,其指標位址需要可以整除 4 ,也就是說最後的兩個 bit 清零。 再根據題目中的 flags 給予靈感,直接 v & ~3 即可達到此效果。 EXP1 = (struct foo *)(v & ~3)

測驗 3

考慮以下程式碼,能將輸入的 8 位元無號整數逐一位元反轉,如同 LeetCode 190. Reverse Bits 的描述。

#include <stdint.h>
uint8_t rev8(uint8_t x)
{
    x = (x >> 4) | (x << 4);               
    x = ((x & 0xCC) >> 2) | (EXP2);
    x = ((x & 0xAA) >> 1) | (EXP3);
    return x;
}

第一行相當直觀將 8-bit 分為前後兩段,並且前後交換
第二行中 0xCC = 110011002 ,可以看出為了將 1 與 0 位置交換,所以可以仿照其寫出 (EXP2) 為 001100112 再左移 2bit , EXP2 = (x & 0x33) << 2
第三行則再細切成相鄰兩位元交換,如同 0xAA = 101010102EXP3 取 010101012 再左移 1bit , EXP3 = (x & 0x55) << 1

測驗 4

嘗試將 foreach 巨集 予以擴充,使得支援以下寫法:

    int i;
    foreach_int(i, 0, -1, 100, 0, -99) {
        printf("i is %i\n", i);
    }
    const char *p;
    foreach_ptr(p, "Hello", "world") {
        printf("p is %s\n", p);
    }

其中的巨集定義為:

#include <assert.h>
#define _foreach_no_nullval(i, p, arr) \
    assert((i) >= sizeof(arr) / sizeof(arr[0]) || (p))

#define foreach_int(i, ...)                                            \
    for (unsigned _foreach_i = (((i) = ((int[]){__VA_ARGS__})[0]), 0); \
         _foreach_i < sizeof((int[]){__VA_ARGS__}) / sizeof(int);      \
         (i) = ((int[]){__VA_ARGS__, 0})[EXP4])

#define foreach_ptr(i, ...)                                                 \
    for (unsigned _foreach_i =                                              \
             (((i) = (void *) ((typeof(i)[]){__VA_ARGS__})[0]), 0); \
         (i); (i) = (void *) ((typeof(i)[]){__VA_ARGS__,            \
                                                    NULL})[EXP5],   \
                  _foreach_no_nullval(_foreach_i, i,                        \
                                      ((const void *[]){__VA_ARGS__})))

TODO

測驗 5

針對 LeetCode 29. Divide Two Integers,以下是可能的實作:

#include <limits.h>
int divide(int dividend, int divisor)
{
    int signal = 1;
    unsigned int dvd = dividend;
    if (dividend < 0) {
        signal *= -1;
        dvd = ~dvd + 1;
    }

    unsigned int dvs = divisor;
    if (divisor < 0) {
        signal *= -1;
        dvs = ~dvs + 1;
    }

    int shift = 0;
    while (dvd > (EXP6))
        shift++;

    unsigned int res = 0;
    while (dvd >= dvs) {
        while (dvd < (dvs << shift))
            shift--;                         
        res |= (unsigned int) 1 << shift;
        EXP7;
    }

    if (signal == 1 && res >= INT_MAX)
        return INT_MAX;
    return res * signal;
}

前兩個 if 迴圈分別判斷除數與被除數的正負,如其中有負數,則以 signal 紀錄之,並將負數取絕對值以實現除法。接下來的演算法概念則與長除法相似,首先將除數提高至被除數的最高位數,再逐位數算出商數。第一個 while 迴圈就是在做提高位數的部分,其判斷式即為將除數乘上 2 的冪直到大魚被除數為止, EXP6 = dvs << shift
第二個 while 迴圈即為對每個位數計算對映的商,並將被除數減去所消去之值, EXP7 = dvd -= dvs << shift

測驗 6

針對 LeetCode 149. Max Points on a Line,以下是可能的實作:

#include <stdbool.h>
#include "list.h"

struct Point {
    int x, y;
};

struct point_node {
    int p1, p2;
    struct list_head link;
};

static bool can_insert(struct list_head *head, int p1, int p2)
{
    struct point_node *pn;
    list_for_each_entry (pn, head, link)
        return EXP8;
    return true;
}

static int gcd(int x, int y)
{
    while (y) {
        int tmp = y;
        y = x % y;
        x = tmp;
    }
    return x;
}

static int maxPoints(struct Point *points, int pointsSize)
{
    if (pointsSize <= 2)
        return pointsSize;

    int i, j, slope_size = pointsSize * pointsSize / 2 + 133;
    int *dup_cnts = malloc(pointsSize * sizeof(int));
    int *hori_cnts = malloc(pointsSize * sizeof(int));
    int *vert_cnts = malloc(pointsSize * sizeof(int));
    int *slope_cnts = malloc(slope_size * sizeof(int));
    memset(hori_cnts, 0, pointsSize * sizeof(int));
    memset(vert_cnts, 0, pointsSize * sizeof(int));
    memset(slope_cnts, 0, slope_size * sizeof(int));

    for (i = 0; i < pointsSize; i++)
        dup_cnts[i] = 1;

    struct list_head *heads = malloc(slope_size * sizeof(*heads));
    for (i = 0; i < slope_size; i++)
        INIT_LIST_HEAD(&heads[i]);

    for (i = 0; i < pointsSize; i++) {
        for (j = i + 1; j < pointsSize; j++) {
            if (points[i].x == points[j].x)
                hori_cnts[i]++, hori_cnts[j]++;

            if (points[i].y == points[j].y)
                vert_cnts[i]++, vert_cnts[j]++;

            if (points[i].x == points[j].x && points[i].y == points[j].y)
                dup_cnts[i]++, dup_cnts[j]++;

            if (points[i].x != points[j].x && points[i].y != points[j].y) {
                int dx = points[j].x - points[i].x;
                int dy = points[j].y - points[i].y;
                int tmp = gcd(dx, dy);
                dx /= tmp;
                dy /= tmp;
                int hash = dx * dy - 1333 * (dx + dy);
                if (hash < 0)
                    hash = -hash;
                hash %= slope_size;
                if (can_insert(&heads[hash], i, j)) {
                    struct point_node *pn = malloc(sizeof(*pn));
                    pn->p1 = i;
                    pn->p2 = j;
                    EXP9;
                }
            }
        }
    }

    for (i = 0; i < slope_size; i++) {
        int index = -1;
        struct point_node *pn;
        list_for_each_entry (pn, &heads[i], link) {
            index = pn->p1;
            slope_cnts[i]++;
        }
        if (index >= 0)
            slope_cnts[i] += dup_cnts[index];
    }

    int max_num = 0;
    for (i = 0; i < pointsSize; i++) {
        if (hori_cnts[i] + 1 > max_num)
            max_num = hori_cnts[i] + 1;
        if (vert_cnts[i] + 1 > max_num)
            max_num = vert_cnts[i] + 1;
    }
    for (i = 0; i < slope_size; i++) {
        if (slope_cnts[i] > max_num)
            max_num = slope_cnts[i];
    }

    return max_num;
}

TODO

測驗 7

考慮 ilog32 函式可針對給定的 32 位元無號數,計算扣除開頭的 0,最少需要多少位元才可儲存 (the minimum number of bits required to store an unsigned 32-bit value without any leading zero bits),以下是一個可能的實作:

int ilog32(uint32_t v)
{
    int ret = v > 0;
    int m = (v > 0xFFFFU) << 4;
    v >>= m;
    ret |= m;
    m = (v > 0xFFU) << 3;
    v >>= m;
    ret |= m;
    m = (v > 0xFU) << 2;
    v >>= m;
    ret |= m;
    m = EXP10;
    v >>= m;
    ret |= m;
    EXP11;
    return ret;
}