guruando con Borja
`PfsSimpleSpectrum` - https://github.com/Subaru-PFS/datamodel/blob/master/python/pfs/datamodel/pfsSimpleSpectrum.py
`Target` - https://github.com/Subaru-PFS/datamodel/blob/master/python/pfs/datamodel/target.py
`MaskHelper` - https://github.com/Subaru-PFS/datamodel/blob/master/python/pfs/datamodel/masks.py (usada para las flags)
```python
from pfs.datamodel import Target, MaskHelper, PfsSimpleSpectrum
import numpy as np
flux = np.arange(300)
wave = np.linspace(178, 186, num=300)
# ya tienes model.wave, model.flux
# Define el target
my_target = Target(0, #catId, # 0
0, #tract, # 0
'0', patch,# '0'
0, #objId,# ObjId, 0
ra=23, # np.nan, # no pude ser nan! Fallara al escribir el fits.
dec=12, # np.nan, # no puede ser nan!
)
#targetType=TargetType.UNASSIGNED,
#fiberFlux=None,)
## O lo puedes leer de otro archivo
# hdu = fits.read('other_spectrum.fits')
# my_target = Target().fromFits(hdu)
my_mask = (flux * 0).astype(np.int8)
flags = MaskHelper() # FIXME - Parece que asà funciona bien.
my_header = {
"fiberFlux": 44,
"psfFlux": 100,
"totalFlux": 235,
"fiberFluxErr": 3,
"psfFluxErr": 23,
"totalFluxErr": 15
}
my_spectrum = PfsSimpleSpectrum(my_target, wave, flux, my_mask, flags, my_header)
my_spectrum.writeFits('my_spectrum.fits')
from astropy.io import fits
my_example = fits.open('my_spectrum.fits')
[m.header for m in my_example]
```
Dependencies
- astropy
- scipy