# Potential Energy per Kilogram, on Earth and on the Moon ###### tags: `Jean-Baptiste` # Gravitational potential at the surface of the Moon ![](https://i.imgur.com/0ksv5k0.png) The problem inputs are $$ \begin{equation} \tag{1} \begin{cases} \frac{M_{Earth}}{M_{Moon}} = 81 \\ \frac{r_{Earth}}{r_{Moon}} = 3.7 \\ E_{P\,Earth} = -63\ \mathrm{MJ\ kg^{-1}} \end{cases} \end{equation} $$ We also know $$ \begin{equation} \tag{2} E_P = - \frac{GMm}{r} \end{equation} $$ but we don't know $m$ (the mass of the object whose gravitational potential we wish to compare). However, applying $(2)$ to both the Earth and the Moon situations, and keeping the same $m$, we derive $$ \begin{equation} \tag{3} \begin{cases} E_{P\,Earth} = - \frac{GM_{Earth}m}{r_{Earth}} \\ E_{P\,Moon} = - \frac{GM_{Moon}m}{r_{Moon}} \end{cases} \end{equation} $$ The ratio of $E_{P\,Moon}$ to $E_{P\,Earth}$ works out to $$ \begin{align*} \frac{E_{P\,Moon}}{E_{P\,Earth}} &= \frac{\frac{GM_{Moon}m}{r_{Moon}}}{\frac{GM_{Earth}m}{r_{Earth}}}\\ &= \frac{GM_{Moon}m}{r_{Moon}} \times \frac{r_{Earth}}{GM_{Earth}m}\\ \end{align*} $$ Simplifying by both $G$ and $m$, we have[^1] $$ \begin{align*} \frac{E_{P\,Moon}}{E_{P\,Earth}} &= \frac{M_{Moon} \times r_{Earth}}{r_{Moon} \times M_{Earth}} \\ &= \frac{M_{Moon}}{M_{Earth}} \times \frac{r_{Earth}}{r_{Moon}} \\ &= \left(\frac{M_{Earth}}{M_{Moon}}\right)^{-1} \times \left(\frac{r_{Earth}}{r_{Moon}}\right) \\ \end{align*} $$ and therefore $$ \begin{equation} \boxed{ E_{P\,Moon} = E_{P\,Earth} \times \left(\frac{M_{Earth}}{M_{Moon}}\right)^{-1} \times \left(\frac{r_{Earth}}{r_{Moon}}\right) } \end{equation} $$ From the problem data, this works out to $$ E_{P\,Moon} = (-63 \times \frac{1}{81} \times 3.7) \ \mathrm{MJ\ kg^{-1}} $$ $$ \boxed{ E_{P\,Moon} = -2.877 \ \mathrm{MJ\ kg^{-1}} } $$ ## Epilogue ![Saturn V](https://i.imgur.com/vawpTDh.png)![LEM](https://i.imgur.com/C056qpj.png) <style> img[alt="Saturn V"], img[alt="LEM"] { max-width: 40%; } </style> From data available on [Wikipedia](https://en.wikipedia.org/wiki/Saturn_V) (for Saturn V and the CSM) and the [NASA website](https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1969-059C) (for the LM): | Stage | Wet (full) mass | Dry (empty) mass | Propellant mass | -------- | -------- | -------- | -------- | | [S-IC](https://en.wikipedia.org/wiki/Saturn_V#S-IC_first_stage) | 2,214,000 kg | 137,000 kg | 2,077,000 kg | | [S-II](https://en.wikipedia.org/wiki/Saturn_V#S-II_second_stage) | 480,000 kg | 36,000 kg | 444,000 kg | | [S-IVB](https://en.wikipedia.org/wiki/Saturn_V#S-IVB_third_stage) | 119,000 kg | 10,000 kg | 109,000 kg | | **Total (Saturn V)** | | | **2,630,000 kg** | | [Apollo LM ascent stage](https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1969-059C) | | 2,445 kg | 2,376 kg | [Apollo CSM](https://en.wikipedia.org/wiki/Apollo_command_and_service_module) | 28,800 kg | 11,900 kg | 16,900 kg | | **Total (Apollo return to Earth)** | | | **19,276 kg** | ... which works out[^2] to a *practical* $E_{🚀\, Earth}$ more than 130 times larger than ${E_{🚀\, Moon}}$. This is called, [the tyranny of the rocket equation](https://www.nasa.gov/mission_pages/station/expeditions/expedition30/tryanny.html) (not to mention atmospheric drag). [^1]: [Strikethrough doesn't appear to be possible in MathJax](https://stackoverflow.com/questions/62089276/strikethrough-in-mathjax), sorry. [^2]: Assuming both sets of propellants have similar performance, as measured by their energy-to-mass ratio. We neglected the weight of the descent stage of the LM (which stayed on the Moon); but we suspect that the difference would be negligible if we didn't.