# A Cross-Platform Study on IoT Malware
---
## Abstract
作者提出多階段的分析 : (事實上跟一般惡意軟體分析沒差多少)
**Multi-level** analysis of IoT malware programs based on static/dynamic analysis.
First
>Entropy-based method to differentiate packing malware from non-packed ones
Second
>動態、靜態分析的 Characterizing information 做 t-SNE (視覺化) provides a visual hint on
the interpretability of different features
Third
>SVM 做 malware 分類
---
## Data
IoTPOT:
IOT的 Honey Pot ,虛擬化Linux 系統,具有一些滲透漏洞,可以記錄惡意軟體的指令和動作
9,085 samples collected 以SHA256 來 label 他們
最後限制在以三大類 Bashlite 、Mirai、 Tsunami 共 2,931 samples 作為Dataset
---
[A] preprocess:
packing entropy analysis => Lyda et al.
Entropy => 不確定性問題所包含「不確定」(uncertainty) 的程度可以用數學來定量
[B]Feature Engineering
###### tags: `thesis`