###### tags: `熱傳學` # CH 4. Note ## 4.1 General Considerations and Solution Techniques - Determine the temperature distribution in the medium For two-dimensiona, steady-state conditions with no generation and constant thermal conducitivity, from Eq. 2.22 we obtain $\dfrac{\partial ^2 T}{\partial x^2}+\dfrac{\partial ^2 T}{\partial y^2}=0$ - Using this equation to solve for $T(x,y)$, then determine the heat flux components $q_x''$ and $q_y''$ ## 4.2 The Method of Separation of Variables ![](https://i.imgur.com/4Ou5Bxk.png) Assuming negligible heat transfer from the surfaces of the plate of the ends of the rod, temperature gradients normal to the x-y plane may be neglected $(\partial ^2 T/\partial z^2\approx 0)$ - Transformation $\theta \equiv \dfrac{T-T_1}{T_2-T_1}\quad\rightarrow\quad\dfrac{\partial^2\theta}{\partial x^2}+\dfrac{\partial^2\theta}{\partial y^2}=0$ - Boundary conditions $\begin{aligned} \theta(0,y)&=0\ \ and\quad\theta(x,0)=0\\ \theta(L,y)&=0\ \ and\quad\theta(x,W)=1 \end{aligned}$ - Assume the existence of a solution of the form $\theta(x,y)=X(x)\bullet Y(y)$$\qquad\rightarrow\ \ \dfrac{1}{X}\dfrac{d^2X}{dx^2}=\dfrac{1}{Y}\dfrac{d^2Y}{dy^2}$ The equality can apply only if both sides are equal to the same constant $\begin{aligned} \dfrac{d^2 X}{dx^2}+\lambda^2X=0\\ \dfrac{d^2 Y}{dy^2}-\lambda^2Y=0 \end{aligned}$ the general form of the two-dimensional solution $\theta=(C_1\ cos\lambda x+C_2\ sin\lambda x)\ (C_3e^{-\lambda y}+C_4e^{\lambda y})$ ### Applying the conditions - $\theta(0,y)=0$ and $\theta(x,0)=0$ we have $C_1=0$ and $C_3=-C_4$ - Applying $\theta(L,y)=0$, we obtain $C_2C_4\ sin\lambda L\ (e^{\lambda y}-e^{-\lambda y})=0$ the condition is satisfied by requiring that $sin\ \lambda L=0$ $\lambda=\dfrac{n\pi}{L}\ \ n=1, 2, 3, ...$ - The desired solution may be expressed as $\theta =C_2C_4\ sin\dfrac{n\pi x}{L}\ (e^{n\pi y/L}-e^{-n\pi y/L})$