# Meeting Log ## Weekly Meeting: 11/4 ### PPT Section * **IMPORTANT**: Framing must be changed to **Cloud Resource Usage Health Check** * Predict output: Red 1. Motivation * Hook: Story * Story must be related with the Youtube video 2. Basic Introduction (Benefit) * Reducing Cost * Save Time * Security: Fraud Detection * Smart Strategy 3. System Architecture and Demo 4. Future Work ## Set Up: 8/16 2022 10:30 - 11:30 Members: Jay, Benjamin, Jessica, Sebastian, Winnie ### Goal 1. Project Planning 2. Set Up Goal 3. Weekly Planning ### Result 1. Job Assignments: * __Model and Framework Design__: Benjamin, Jessica, Winnie * __Data Visualization__: Brian, Sebastian 2. Weekly Goal: * MTS Data visualization with ground truth * Create GitHub repository ### TODO - [x] Set up Github Repository - [x] Research - [x] Tableau - [x] Power BI - [x] Pyplot - [x] Meeting 8/17 2022 10AM to sync up ## Daily: 8/17 2022 10:00 - 10:30 Members: Benjamin, Jessica, Sebastian ### Goal 1. Sync up research 2. Choose one platform to visualize ### Result 1. Decide to use Python based data visualization tools 2. Explore Orange Application for Data Visualization ### TODO - [x] Improve graph on matplotlib - [x] Explore Orange utilities - [x] Prepare PPT for Friday ## Weekly: 8/19 2022 10AM Members: Jay, Benjamin, Brian, Jessica, Sebastian, Winnie ### Goal 1. Weekly Progress Check 2. Weekly Planning ### Result ### TODO - [ ] Decide plotly or matplotlib **-> transfer to backlog** - [x] Decide weekly goal ## Daily: 8/23 2022 10 AM Members: Jay, Benjamin, Brian, Jessica, Sebastian, Winnie ### Result ### TODO ## Daily: 8/25 2022 10 AM Members: Jay, Benjamin, Jessica, Sebastian ### Result * Push visualization to backlog and focus on visualization for research purposes ### TODO - [x] Define functions - [x] ARIMA: Winnie - [x] XGboost: Sebastian - [x] iForest: Jessica - [x] SVM: Benjamin ## Weekly: 8/26 2022 10 AM Members: Jay, Benjamin, Brian, Jessica, Sebastian, Winnie ### Result * Model Framework * Preprocessing * Combine the 8 csv from RD for spatial * Make a range between anomaly to **1** * Model * Make function for each of the model such that it can give an output given a dataframe and hyperparameter * The output for UTS would be the anomaly score and the output for MTS would be the anomaly label (ie. 0 or 1) * Postprocessing * Manifold/Wighting: Make sure that the result from the temporal model and the spatial model are weighted equally. * Consider rule based or clustering ### TODO - [x] Make PPT ## Weekly: 9/2 2022 13:30 Members: Jay, Benjamin, Brian, Jessica, Sebastian, Winnie ### Result 1) next week ,after code revie every week data evaluatiopn slide(partiose github data) 2) f1 score is "useless" for now on, ignore him 3) jay will do a 甘特图 4) we will pressent at the first week of 12月 5) 11 月will start to pack, make video ,sliding ,and other importance stuf ### TODO - [ ] Add ARIMA and XGboost to model.py - [ ] Test out the models with SMAP, MSL, and SMD [link](https://github.com/NetManAIOps/OmniAnomaly) - [ ] Dataset Visualization - [ ] Postprocessing function ## UTS: 9/5 2022 (21:00 - 22:30) Members: Jessica, Sebastian, Winnie ### Result * Cleared up misunderstanding about the parameters `SW` and `lags` * Sync up I/O of UTS Models: * Input: MTS dataframe $df_{n \times C}$ * Output: Matrix $A_{(SW-n+1)\times C}$ ### TODO - [x] Add ARIMA to model.py - [ ] Add Xgboost to model.py - [ ] Make changes to Xgboost I/O ## Postprocessing: 9/7 2022 (21:00 - 00:00) Members: Benjamin, Brian, Jessica, Winnie ### Result 1. UMAP 進度報告 2. PCA 進度報告 3. Up scaling 進度報告 4. 產出9/8的PPT ### TODO 1. visualization 2. 準備下週PPT ## Weekly: 9/8 2022 (17:40 - 18:40) Members: Jay, Benjamin, Brian, Jessica, Sebastian, Winnie ### Result ### TODO ###### tags: `Documentation`