### A Wavelet Wavenet Tensorflow Model
```python
def wavelet_transform_tf(input_tensor, wavelet='haar'):
"""
Applies a discrete wavelet transform using TensorFlow.
Parameters:
- input_tensor: A TensorFlow tensor with shape (batch_size, time_steps, channels).
- wavelet: The wavelet type, e.g., 'haar', 'db1', 'sym2', etc.
Returns:
- A transformed tensor with the wavelet coefficients.
"""
# Define the filters for supported wavelets
wavelet_filters = {
'haar': ([1 / np.sqrt(2), 1 / np.sqrt(2)], [1 / np.sqrt(2), -1 / np.sqrt(2)]),
'db1': ([1 / np.sqrt(2), 1 / np.sqrt(2)], [-1 / np.sqrt(2), 1 / np.sqrt(2)]),
'sym2': ([0.48296, 0.83652, 0.22414, -0.12941],
[-0.12941, -0.22414, 0.83652, -0.48296]),
}
if wavelet not in wavelet_filters:
raise ValueError(f"Unsupported wavelet type: {wavelet}")
# Get the decomposition filters for the selected wavelet
dec_lo, dec_hi = wavelet_filters[wavelet]
# Convert to TensorFlow constants
dec_lo = tf.constant(dec_lo, dtype=tf.float32)
dec_hi = tf.constant(dec_hi, dtype=tf.float32)
# Match the filter shapes to the input channels
input_channels = input_tensor.shape[-1]
kernel_size = len(dec_lo)
dec_lo = tf.reshape(dec_lo, (kernel_size, 1, 1)) # Shape: (kernel_size, 1, 1)
dec_hi = tf.reshape(dec_hi, (kernel_size, 1, 1))
# Broadcast filters to match the input channels
dec_lo = tf.tile(dec_lo, [1, 1, input_channels]) # Shape: (kernel_size, 1, input_channels)
dec_hi = tf.tile(dec_hi, [1, 1, input_channels])
# Apply the filters using convolution
approx = tf.nn.conv1d(input_tensor, filters=dec_lo, stride=2, padding="VALID")
detail = tf.nn.conv1d(input_tensor, filters=dec_hi, stride=2, padding="VALID")
# Concatenate the approximation and detail coefficients along the channel dimension
return tf.concat([approx, detail], axis=-1)
def calculate_wavelet_output_shape(input_shape, wavelet='haar'):
"""
Computes the output shape of the wavelet transform for a given input shape.
Parameters:
- input_shape: Tuple (time_steps, channels).
- wavelet: Wavelet type, e.g., 'haar', 'db1', 'sym2'. Default is 'haar'.
Returns:
- Tuple of the output shape (time_steps, 2 * channels) to include approximation and detail coefficients.
"""
time_steps, channels = input_shape
# Define the wavelet filter lengths for supported wavelets
wavelet_filters = {
'haar': [1 / np.sqrt(2), 1 / np.sqrt(2)], # Haar wavelet
'db1': [1 / np.sqrt(2), 1 / np.sqrt(2)], # Daubechies 1 wavelet
'sym2': [0.48296, 0.83652, 0.22414, -0.12941], # Symlet 2 wavelet
}
if wavelet not in wavelet_filters:
raise ValueError(f"Unsupported wavelet type: {wavelet}")
filter_length = len(wavelet_filters[wavelet]) # Length of the wavelet filter
# Align with wavelet padding behavior: Add filter_length - 1 to input time steps
padded_time_steps = time_steps + (filter_length - 1)
# Calculate the reduced time steps after downsampling
output_time_steps = padded_time_steps // 2
# Output includes both approximation (cA) and detail (cD) coefficients
return (output_time_steps, 2 * channels)
# Custom layer for dynamic padding
class DynamicPaddingLayer(layers.Layer):
def __init__(self):
super(DynamicPaddingLayer, self).__init__()
def call(self, wavelet_features_resized, time_skip_sum):
# Get dynamic time dimension from time_skip_sum
time_skip_length = tf.shape(time_skip_sum)[1] # Extract time dimension (axis=1)
wavelet_features_length = tf.shape(wavelet_features_resized)[1] # Get wavelet features time dimension
# Calculate padding length dynamically
pad_length = time_skip_length - wavelet_features_length
# Apply padding with dynamic length along the time dimension
padded_wavelet_features = tf.pad(wavelet_features_resized, [[0, 0], [0, pad_length], [0, 0]])
return padded_wavelet_features
def compute_output_shape(self, input_shape):
# Handle dynamic input shapes
if input_shape[0] is None or input_shape[1] is None:
# If any input dimension is None (batch size or time steps), return dynamic shape
return (input_shape[0], input_shape[1], input_shape[2]) # Same batch size and features, adjusted time steps
# Otherwise, handle the shapes directly (non-dynamic dimensions)
wavelet_shape, time_skip_shape = input_shape
# Output shape should have the same batch size and feature dimensions, with adjusted time dimension
return (wavelet_shape[0], time_skip_shape[1], wavelet_shape[2])
# Example usage in model construction
def build_wavelet_wavenet(input_shape=(2048, 2), dilations=[1, 2, 4, 8], residual_channels=64, skip_channels=128) -> tf.keras.Model:
inputs = layers.Input(shape=input_shape)
# **Wavelet Transform Pathway**
wavelet_output_shape = calculate_wavelet_output_shape(input_shape) # Calculate output shape
wavelet_features = layers.Lambda(
lambda x: wavelet_transform_tf(x, wavelet='haar'),
output_shape=(None, wavelet_output_shape[0], wavelet_output_shape[1]) # Batch dimension remains None
)(inputs)
# **Reshaping wavelet features**
wavelet_features_reshaped = layers.Reshape((-1, wavelet_output_shape[1]))(wavelet_features)
# **Time-Domain Pathway**
time_features = layers.Conv1D(residual_channels, kernel_size=1, activation=None, padding='same')(inputs) # Initial projection
skip_connections = []
for dilation_rate in dilations:
residual = time_features
tanh_out = layers.Conv1D(residual_channels, kernel_size=3, dilation_rate=dilation_rate, padding='causal', activation='tanh')(time_features)
sigmoid_out = layers.Conv1D(residual_channels, kernel_size=3, dilation_rate=dilation_rate, padding='causal', activation='sigmoid')(time_features)
gating_signal = layers.Multiply()([tanh_out, sigmoid_out])
residual_out = layers.Conv1D(residual_channels, kernel_size=1, activation=None, padding='same')(gating_signal)
time_features = layers.Add()([residual, residual_out])
skip_out = layers.Conv1D(skip_channels, kernel_size=1, activation=None, padding='same')(gating_signal)
skip_connections.append(skip_out)
time_skip_sum = layers.Add()(skip_connections)
time_skip_sum = layers.Activation('relu')(time_skip_sum)
time_skip_sum = layers.Conv1D(skip_channels, kernel_size=1, activation='relu', padding='same')(time_skip_sum)
# **Wavelet Features Processing**
wavelet_features_resized = layers.Conv1D(skip_channels, kernel_size=1, activation='relu', padding='same')(wavelet_features_reshaped)
# **Dynamic Padding**
wavelet_features_resized_padded = DynamicPaddingLayer()(wavelet_features_resized, time_skip_sum)
# **Fusion of Time and Frequency Features**
fusion_features = layers.Concatenate(axis=-1)([time_skip_sum, wavelet_features_resized_padded])
# Ensure the dimensions of fusion_features are fixed before passing to Conv1D
fusion_features = layers.Conv1D(skip_channels, kernel_size=1, activation='relu', padding='same')(fusion_features)
# Final Projection
output = layers.Conv1D(input_shape[1], kernel_size=1, activation='tanh', padding='same')(fusion_features)
# Output shape adjustment
final_output = layers.Reshape(input_shape)(output)
model = tf.keras.Model(inputs=inputs, outputs=final_output, name="ComplexWaveNet")
return model
```
### Advanced Loss-Functions for the Model
```python
def stft_loss(y_true, y_pred, frame_length=2048, frame_step=512):
# Convert to mono for STFT
y_true = tf.reduce_mean(y_true, axis=-1) # Shape: [batch_size, signal_length]
y_pred = tf.reduce_mean(y_pred, axis=-1)
# Perform STFT
y_true_stft = tf.signal.stft(y_true, frame_length=frame_length, frame_step=frame_step, pad_end=True)
y_pred_stft = tf.signal.stft(y_pred, frame_length=frame_length, frame_step=frame_step, pad_end=True)
# Compute magnitude spectrogram
y_true_mag = tf.abs(y_true_stft)
y_pred_mag = tf.abs(y_pred_stft)
# Mean squared error in frequency domain
loss = tf.reduce_mean(tf.square(y_true_mag - y_pred_mag))
return loss
def high_freq_emphasis_loss(y_true, y_pred, frame_length=2048, frame_step=512):
# Convert to mono for STFT
y_true = tf.reduce_mean(y_true, axis=-1) # Shape: [batch_size, signal_length]
y_pred = tf.reduce_mean(y_pred, axis=-1)
# Compute STFT for true and predicted signals
y_true_stft = tf.signal.stft(y_true, frame_length=frame_length, frame_step=frame_step, pad_end=True)
y_pred_stft = tf.signal.stft(y_pred, frame_length=frame_length, frame_step=frame_step, pad_end=True)
# Compute magnitude spectrograms
y_true_mag = tf.abs(y_true_stft)
y_pred_mag = tf.abs(y_pred_stft)
# Frequency weighting (linear emphasis on high frequencies)
freq_bins = tf.range(tf.shape(y_true_stft)[-1], dtype=tf.float32)
freq_weights = freq_bins / tf.reduce_max(freq_bins)
# Apply frequency weighting
weighted_loss = freq_weights * tf.square(y_true_mag - y_pred_mag)
result = tf.reduce_mean(weighted_loss)
return result
def combined_loss(y_true, y_pred, alpha=1.0, beta=0.01, gamma=0.01):
# Time-domain loss (MSE)
time_loss = tf.reduce_mean(tf.square(y_true - y_pred))
# Frequency-domain losses
stft_loss_value = stft_loss(y_true, y_pred)
freq_loss_value = high_freq_emphasis_loss(y_true, y_pred)
# Weighted combination
return alpha * time_loss + beta * stft_loss_value + gamma * freq_loss_value
```