### A Wavelet Wavenet Tensorflow Model ```python def wavelet_transform_tf(input_tensor, wavelet='haar'): """ Applies a discrete wavelet transform using TensorFlow. Parameters: - input_tensor: A TensorFlow tensor with shape (batch_size, time_steps, channels). - wavelet: The wavelet type, e.g., 'haar', 'db1', 'sym2', etc. Returns: - A transformed tensor with the wavelet coefficients. """ # Define the filters for supported wavelets wavelet_filters = { 'haar': ([1 / np.sqrt(2), 1 / np.sqrt(2)], [1 / np.sqrt(2), -1 / np.sqrt(2)]), 'db1': ([1 / np.sqrt(2), 1 / np.sqrt(2)], [-1 / np.sqrt(2), 1 / np.sqrt(2)]), 'sym2': ([0.48296, 0.83652, 0.22414, -0.12941], [-0.12941, -0.22414, 0.83652, -0.48296]), } if wavelet not in wavelet_filters: raise ValueError(f"Unsupported wavelet type: {wavelet}") # Get the decomposition filters for the selected wavelet dec_lo, dec_hi = wavelet_filters[wavelet] # Convert to TensorFlow constants dec_lo = tf.constant(dec_lo, dtype=tf.float32) dec_hi = tf.constant(dec_hi, dtype=tf.float32) # Match the filter shapes to the input channels input_channels = input_tensor.shape[-1] kernel_size = len(dec_lo) dec_lo = tf.reshape(dec_lo, (kernel_size, 1, 1)) # Shape: (kernel_size, 1, 1) dec_hi = tf.reshape(dec_hi, (kernel_size, 1, 1)) # Broadcast filters to match the input channels dec_lo = tf.tile(dec_lo, [1, 1, input_channels]) # Shape: (kernel_size, 1, input_channels) dec_hi = tf.tile(dec_hi, [1, 1, input_channels]) # Apply the filters using convolution approx = tf.nn.conv1d(input_tensor, filters=dec_lo, stride=2, padding="VALID") detail = tf.nn.conv1d(input_tensor, filters=dec_hi, stride=2, padding="VALID") # Concatenate the approximation and detail coefficients along the channel dimension return tf.concat([approx, detail], axis=-1) def calculate_wavelet_output_shape(input_shape, wavelet='haar'): """ Computes the output shape of the wavelet transform for a given input shape. Parameters: - input_shape: Tuple (time_steps, channels). - wavelet: Wavelet type, e.g., 'haar', 'db1', 'sym2'. Default is 'haar'. Returns: - Tuple of the output shape (time_steps, 2 * channels) to include approximation and detail coefficients. """ time_steps, channels = input_shape # Define the wavelet filter lengths for supported wavelets wavelet_filters = { 'haar': [1 / np.sqrt(2), 1 / np.sqrt(2)], # Haar wavelet 'db1': [1 / np.sqrt(2), 1 / np.sqrt(2)], # Daubechies 1 wavelet 'sym2': [0.48296, 0.83652, 0.22414, -0.12941], # Symlet 2 wavelet } if wavelet not in wavelet_filters: raise ValueError(f"Unsupported wavelet type: {wavelet}") filter_length = len(wavelet_filters[wavelet]) # Length of the wavelet filter # Align with wavelet padding behavior: Add filter_length - 1 to input time steps padded_time_steps = time_steps + (filter_length - 1) # Calculate the reduced time steps after downsampling output_time_steps = padded_time_steps // 2 # Output includes both approximation (cA) and detail (cD) coefficients return (output_time_steps, 2 * channels) # Custom layer for dynamic padding class DynamicPaddingLayer(layers.Layer): def __init__(self): super(DynamicPaddingLayer, self).__init__() def call(self, wavelet_features_resized, time_skip_sum): # Get dynamic time dimension from time_skip_sum time_skip_length = tf.shape(time_skip_sum)[1] # Extract time dimension (axis=1) wavelet_features_length = tf.shape(wavelet_features_resized)[1] # Get wavelet features time dimension # Calculate padding length dynamically pad_length = time_skip_length - wavelet_features_length # Apply padding with dynamic length along the time dimension padded_wavelet_features = tf.pad(wavelet_features_resized, [[0, 0], [0, pad_length], [0, 0]]) return padded_wavelet_features def compute_output_shape(self, input_shape): # Handle dynamic input shapes if input_shape[0] is None or input_shape[1] is None: # If any input dimension is None (batch size or time steps), return dynamic shape return (input_shape[0], input_shape[1], input_shape[2]) # Same batch size and features, adjusted time steps # Otherwise, handle the shapes directly (non-dynamic dimensions) wavelet_shape, time_skip_shape = input_shape # Output shape should have the same batch size and feature dimensions, with adjusted time dimension return (wavelet_shape[0], time_skip_shape[1], wavelet_shape[2]) # Example usage in model construction def build_wavelet_wavenet(input_shape=(2048, 2), dilations=[1, 2, 4, 8], residual_channels=64, skip_channels=128) -> tf.keras.Model: inputs = layers.Input(shape=input_shape) # **Wavelet Transform Pathway** wavelet_output_shape = calculate_wavelet_output_shape(input_shape) # Calculate output shape wavelet_features = layers.Lambda( lambda x: wavelet_transform_tf(x, wavelet='haar'), output_shape=(None, wavelet_output_shape[0], wavelet_output_shape[1]) # Batch dimension remains None )(inputs) # **Reshaping wavelet features** wavelet_features_reshaped = layers.Reshape((-1, wavelet_output_shape[1]))(wavelet_features) # **Time-Domain Pathway** time_features = layers.Conv1D(residual_channels, kernel_size=1, activation=None, padding='same')(inputs) # Initial projection skip_connections = [] for dilation_rate in dilations: residual = time_features tanh_out = layers.Conv1D(residual_channels, kernel_size=3, dilation_rate=dilation_rate, padding='causal', activation='tanh')(time_features) sigmoid_out = layers.Conv1D(residual_channels, kernel_size=3, dilation_rate=dilation_rate, padding='causal', activation='sigmoid')(time_features) gating_signal = layers.Multiply()([tanh_out, sigmoid_out]) residual_out = layers.Conv1D(residual_channels, kernel_size=1, activation=None, padding='same')(gating_signal) time_features = layers.Add()([residual, residual_out]) skip_out = layers.Conv1D(skip_channels, kernel_size=1, activation=None, padding='same')(gating_signal) skip_connections.append(skip_out) time_skip_sum = layers.Add()(skip_connections) time_skip_sum = layers.Activation('relu')(time_skip_sum) time_skip_sum = layers.Conv1D(skip_channels, kernel_size=1, activation='relu', padding='same')(time_skip_sum) # **Wavelet Features Processing** wavelet_features_resized = layers.Conv1D(skip_channels, kernel_size=1, activation='relu', padding='same')(wavelet_features_reshaped) # **Dynamic Padding** wavelet_features_resized_padded = DynamicPaddingLayer()(wavelet_features_resized, time_skip_sum) # **Fusion of Time and Frequency Features** fusion_features = layers.Concatenate(axis=-1)([time_skip_sum, wavelet_features_resized_padded]) # Ensure the dimensions of fusion_features are fixed before passing to Conv1D fusion_features = layers.Conv1D(skip_channels, kernel_size=1, activation='relu', padding='same')(fusion_features) # Final Projection output = layers.Conv1D(input_shape[1], kernel_size=1, activation='tanh', padding='same')(fusion_features) # Output shape adjustment final_output = layers.Reshape(input_shape)(output) model = tf.keras.Model(inputs=inputs, outputs=final_output, name="ComplexWaveNet") return model ``` ### Advanced Loss-Functions for the Model ```python def stft_loss(y_true, y_pred, frame_length=2048, frame_step=512): # Convert to mono for STFT y_true = tf.reduce_mean(y_true, axis=-1) # Shape: [batch_size, signal_length] y_pred = tf.reduce_mean(y_pred, axis=-1) # Perform STFT y_true_stft = tf.signal.stft(y_true, frame_length=frame_length, frame_step=frame_step, pad_end=True) y_pred_stft = tf.signal.stft(y_pred, frame_length=frame_length, frame_step=frame_step, pad_end=True) # Compute magnitude spectrogram y_true_mag = tf.abs(y_true_stft) y_pred_mag = tf.abs(y_pred_stft) # Mean squared error in frequency domain loss = tf.reduce_mean(tf.square(y_true_mag - y_pred_mag)) return loss def high_freq_emphasis_loss(y_true, y_pred, frame_length=2048, frame_step=512): # Convert to mono for STFT y_true = tf.reduce_mean(y_true, axis=-1) # Shape: [batch_size, signal_length] y_pred = tf.reduce_mean(y_pred, axis=-1) # Compute STFT for true and predicted signals y_true_stft = tf.signal.stft(y_true, frame_length=frame_length, frame_step=frame_step, pad_end=True) y_pred_stft = tf.signal.stft(y_pred, frame_length=frame_length, frame_step=frame_step, pad_end=True) # Compute magnitude spectrograms y_true_mag = tf.abs(y_true_stft) y_pred_mag = tf.abs(y_pred_stft) # Frequency weighting (linear emphasis on high frequencies) freq_bins = tf.range(tf.shape(y_true_stft)[-1], dtype=tf.float32) freq_weights = freq_bins / tf.reduce_max(freq_bins) # Apply frequency weighting weighted_loss = freq_weights * tf.square(y_true_mag - y_pred_mag) result = tf.reduce_mean(weighted_loss) return result def combined_loss(y_true, y_pred, alpha=1.0, beta=0.01, gamma=0.01): # Time-domain loss (MSE) time_loss = tf.reduce_mean(tf.square(y_true - y_pred)) # Frequency-domain losses stft_loss_value = stft_loss(y_true, y_pred) freq_loss_value = high_freq_emphasis_loss(y_true, y_pred) # Weighted combination return alpha * time_loss + beta * stft_loss_value + gamma * freq_loss_value ```