# Conditional distribution for Neal's funnel A simple version of Neal's funnel is: $$ \begin{align*} Y &\sim N(0,\sigma^2) \\ X &\sim N(0,\exp(y)^2) \end{align*} $$ The corresponding densities are $$ \begin{align*} p(y) &\propto \exp(-\tfrac{1}{2} \sigma^{-2} y^2) \\ p(x|y) &\propto \exp(-y) \exp( -\tfrac{1}{2} \exp(y)^{-2} x^2) \end{align*} $$ So the joint density is $$ p(x,y) \propto \exp(-\tfrac{1}{2} \sigma^{-2} y^2 -y -\tfrac{1}{2} \exp(y)^{-2} x^2) $$ Thus the conditional $$ p(y|x) \propto \exp(-\tfrac{1}{2} \sigma^{-2} y^2 -y -\tfrac{1}{2} \exp(y)^{-2} x^2) $$ For large $y$ this is asymptotic to $\exp(-\tfrac{1}{2} \sigma^{-2} y^2)$. So: **under Neal's funnel, $Y|X=x$ has a Gaussian tail**.