--- title: "MeanCompLabAssignment" author: "Jia-Shen" date: "2023-09-25" output: html_document --- # Lab Assignment 2 ```{r libraries, include=F} rm(list = ls()) library(moments) #package for skewness library(knitr) #package for making tables (kable) library(tidyverse) #multiple packages for data wrangling library(gt) # a package to make tables library(lubridate) # a package to manipulate dates ``` ```{r} PEC <- read.csv('../input/PEC.csv') ``` ```{r} glimpse(PEC) PEC$year <- as.factor(PEC$year) ``` ```{r} PEC <- PEC %>% group_by(canton, year, high_adopt) %>% summarise(annual_energy = sum(kwh_total), annual_hosp = sum(total_hosp)) %>% subset(year == 2015 | year == 2020) high_adoption <- PEC %>% subset(high_adopt == 1) low_adoption <- PEC %>% subset(high_adopt == 0) ``` ```{r exploration} p <- ggplot(high_adoption, aes(x = annual_energy, fill = `year`))+ geom_histogram(col="black")+ scale_fill_manual(values=c("royalblue", "gray")) p p + facet_grid(`year` ~ .) ``` ```{r} PEC <- PEC %>% mutate(annual_energy.log = log(annual_energy)) high_adoption <- PEC %>% subset(high_adopt == 1) low_adoption <- PEC %>% subset(high_adopt == 0) ``` ```{r} p2 <- ggplot(high_adoption, aes(x = annual_energy.log, fill = `year`))+ geom_histogram(col="black")+ scale_fill_manual(values=c("royalblue", "gray")) p2 + facet_grid(`year` ~ .) ``` ```{r} p3 <- ggplot(low_adoption, aes(x = annual_energy.log, fill = `year`))+ geom_histogram(col="black")+ scale_fill_manual(values=c("royalblue", "gray")) p3 + facet_grid(`year` ~ .) ``` ```{r} C1 <- t.test(annual_energy.log ~ `high_adopt`, PEC) C2 <- t.test(annual_energy.log ~ `year`, high_adoption, paired=TRUE) C3 <- t.test(annual_energy.log ~ `year`, low_adoption, paired=TRUE) C5a <- t.test(annual_hosp ~ `year`, high_adoption, paired=TRUE) C5b <- t.test(annual_hosp ~ `year`, low_adoption, paired=TRUE) ``` ```{r} C1 C2 C3 C5a C5b ``` ```{r} high.wide <- high_adoption %>% select(canton, year, annual_energy) %>% pivot_wider(names_from = year, values_from = annual_energy) %>% glimpse() head(high.wide) low.wide <- low_adoption %>% select(canton, year, annual_energy) %>% pivot_wider(names_from = year, values_from = annual_energy) %>% glimpse() head(low.wide) ``` ``` {r} npc1 <- wilcox.test(high.wide$`2020`, high.wide$`2015`, paired = TRUE, alternative = "greater") npc2 <- wilcox.test(low.wide$`2020`, low.wide$`2015`, paired = TRUE, alternative = "greater") ``` ```{r} npc1 npc2 ```