--- tags: Formal Language 2019 title: HW-01 --- <style> img { margin: auto; display: block; } </style> # FORMAL Language 2019 HW-1 Scope of the homework (ch2-1 ~ ch2-2) ## Problem 1 Give dfa's for the languages **A.** $L=\{ab^4wb^2: w\in \{a,b\}^*\}$ ==**Solution**== The key is that any string that can be accept by the solution dfa must consist $ab^4$ at the begining and two $b$'s at the end. The first requirement is straightforward, and the second requirement is solved between states $q_5$ to $q_7$. ![](https://i.imgur.com/Q4NTe7u.png) --- **B.** $L=\{ab^na^m:n\ge 3, m\ge 2\}$ ==**Solution**== ![](https://i.imgur.com/axCTUAo.png) --- **C.** $L=\{w_1abbw_2: w_1\in \{a,b\}^*, w_2\in\{a,b\}^*\}$ ==**Solution**== ```graphviz digraph problem5 { rankdir=LR; size="8,5" node [shape = none]; "" node [shape = doublecircle]; q3; node [shape = circle]; "" -> q0 q0 -> q1 [ label = "a" ]; q0 -> q0 [ label = "b" ]; q1 -> q1 [ label = "a" ]; q1 -> q2 [ label = "b" ]; q2 -> q1 [ label = "a" ]; q2 -> q3 [ label = "b" ]; q3 -> q3 [ label = "a,b" ]; } ``` --- **D.** $L=\{ba^n: n\ge 1, n\ne 4\}$ ==**Solution**== The dfa must have final states corresponding to one $a$, two, three, five, and more $a$'s but not four $a$'s as shown below. ![](https://i.imgur.com/Gccf4kG.png) --- ## Problem 2 With $\Sigma = \{a,b \}$, give a dfa for $L=\{w_1aw_2: |w_1|\ge 3, |w_2|\le 4\}$ ==**Solution**== The dfa will accept any string of length greater than four with no more than four consecutive $b$'s after the last $a$. ![](https://i.imgur.com/JlCdOlh.png) --- ## Problem 3 Find dfa's for the following languages on $\Sigma \{a,b\}$. **A.** $L=\{w:|w| \mbox{ mod } 3\ne 0\}$. **Solution:** Use states labeled with $|w| \mbox{ mod } 3$. ![](https://i.imgur.com/howD6cf.png) --- **B.** $L=\{w:|w| \mbox{ mod } 5=0\}$. **Solution:** Use states labeled with $|w| \mbox{ mod } 5$. ![](https://i.imgur.com/c2rAuYH.png) --- **C.** $L=\{w:n_a(w) \mbox{ mod } 3 < 1\}$. **Solution:** Use states labeled with $n_a(w) \mbox{ mod } 3$. ![](https://i.imgur.com/q4YF8vm.png) --- **D.** $L=\{w:n_a(w) \mbox{ mod } 3 < n_b(w) \mbox{ mod } 3\}$ **Solution:** For this we use nine states, with the first part of each labeled $n_a(w) \mbox{ mod } 3$, the second part $n_b(w) \mbox{ mod } 3$. ![](https://i.imgur.com/0qgk6IY.png) --- **E.** $L=\{w:(n_a(w)-n_b(w)) \mbox{ mod } 3 =0\}$ **Solution:** We use states labeled by two digit numbers, with the first part of each labeled $n_a(w) \mbox{ mod } 3$, the second part, $n_b(w) \mbox{ mod } 3$. ![](https://i.imgur.com/ZJodJEG.png) --- **F.** $L=\{w:(n_a(w)+2n_b(w)) \mbox{ mod } 3 < 1\}$ **Solution:** Use the states labeled with $n_a(w) + 2n_b(w) \mbox{ mod } 3$. ![](https://i.imgur.com/4EDQds6.png) --- **G.** $L=\{w:|w| \mbox{ mod } 3 = 0, |w|\ne 3\}$ **Solution:** Use states labeled with $|w| = 0, 1, 2, 3, ..., 6$. ![](https://i.imgur.com/6NHjRXz.png) --- ## Problem 4 Design n nfa with no more than five states for the set $\{abab^n:n\ge 0\}\cup \{aba^n:n\ge 0\}$. **Solution:** ![](https://i.imgur.com/EID6Z3G.png)